Posts Tagged ‘Elektrostatik’

Orgonotische Erregungseffekte II (1958) (Teil 7)

11. Dezember 2018

von David Boadella

6. Die Pulsation der Elektroskop-Blätter

Bisher wurden verschiedene Wege zum Laden und Entladen des Elektroskops beschrieben. Was folgt, ist ein Bericht über das Verhalten des Elektroskops, nachdem es geladen worden ist: Als ich das Material entfernte, welches das Elektroskop an der Scheibe geladen hatte (entweder durch direkten Kontakt oder durch Induktion), begannen die Blätter zuerst zu konvergieren, dann sich aber fast sofort wieder abzuspreizen; manchmal war das Ausmaß der Wiederabspreizung größer als das der anfänglichen Abspreizung. Oft war es etwas weniger. Und zu anderen Zeiten war sie geringfügig oder erschien gar nicht. Im letzteren Fall konnte das Elektroskop die auf es übertragene Ladung nicht aufrechterhalten. Interessant ist, daß, wenn das Elektroskop seine anfängliche Ladung beibehalten oder sogar erhöht hat, dies sich niemals direkt nach der Entfernung des Ladungsmaterials zutrug. Immer gab es eine dazwischenliegende Phase partieller Konvergenz der Blätter. Je schneller ich den Isolator entfernte, desto schneller zuckten die Blätter zusammen und wieder auseinander. Es war sogar möglich, die Reaktion zu verpassen, wenn man nicht gezielt danach schaute, genauso wie man sich nicht bewußt ist, wie oft eine Person mit ihren Augenlidern blinzelt, es sei denn, das Blinzeln ist sehr offensichtlich, oder man ist danach aus, genau dies zu bemerken. Die Analogie zum Blinzeln mag weit hergeholt klingen, aber es ist eine faszinierende Tatsache, daß die erregten Goldblätter sich in vieler Hinsicht so verhalten, als ob sie ‚lebendig‘ wären. Reich beobachtete eine ähnliche Anziehung und Abstoßung in angeregten Seidenfäden. Er schrieb, daß „die Reaktion mich an kontrahierende Froschschenkel erinnert. Zuerst wollte ich diesen Vergleich von mir weisen“ (5, S. 134). Der Übersetzer des Artikels, Theodor Wolfe, fügte eine interessante Fußnote hinzu:

Es erscheint mir eigentümlich, daß die Bewegung eines Paares von Seidenfäden an eine biologische Bewegung erinnern sollte. Ich erinnere mich gut an mein Erstaunen, als ich dieses Experiment zum ersten Mal sah. Mein unmittelbarer Eindruck war tatsächlich der von sich bewegenden Froschschenkeln. Zeuge solcher Experimente zu sein, die immer wieder das Funktionieren einer einheitlichen Energie sowohl im physischen als auch im biologischen Bereich demonstrieren, ist eine der beeindruckendsten Erfahrungen. (5, S. 134)

Das Phänomen der alternierenden Bewegung als Reaktion auf die Anregung eines geladenen Elektroskops tritt nicht nur beim Entfernen des Isolators auf, sondern auch bei der erneuten Annäherung desselben Isolators. Das heißt, wenn man ein Stück geladenen Gummis in die Nähe eines Elektroskops bringt, das schon von demselben Stück Gummi erregt worden ist und seine Ladung behalten hat, beginnen die Blätter zu konvergieren, wenn das Gummi sich nähert, aber ab einem bestimmten Punkt spreizen sie sich wieder und bleiben gespreizt, wenn sich das Gummi auf der Scheibe befindet. Indem ich also zwei Bewegungen mit dem geladenen Isolator (zur Elektroskopscheibe und von ihr weg) vollführte, erzeugte ich vier abwechselnde Bewegungen in den Blättern: Konvergenz, Abspreizung, Konvergenz, Abspreizung. Es war die Beobachtung dieser Art von Bewegung, hier und in anderen Kontexten, die Reich dazu brachte, den Begriff „Pulsation“ als Beschreibung für das zu verwenden, was stattgefunden hat. Reich wies darauf hin, daß die Pulsation in den Blättern „nur dann erfolgt, wenn der Kontakt des Energiefeldes mit der angeregten Substanz hergestellt und wenn es unterbrochen wird“ (5, S. 133). Das gleiche Phänomen wird gefunden, wenn eine Glühbirne durch einen geladenen Isolator in einer Entfernung angeregt wird. Reich beschrieb, wie das Flackern einer durch einen geladenen Stab angeregten Leuchtstofflampe einer Abfolge von „Kontakt und Kontaktunterbrechung“ entspricht. Es scheint auch wahrscheinlich zu sein, daß dies passiert, wenn wir eine Glühbirne mit unseren Händen streicheln. Harveys Betonung der „Trennung von Oberflächen“ als eine Erklärung der Lumineszenz von Rollpflaster, etc., kann jetzt als ein spezieller Fall von „Kontaktunterbrechung“ angesehen werden. Der Kontakt von Oberflächen ist nicht wesentlich, da die Anziehung und Dissoziation von Energiefeldern sowohl zu Erstrahlungseffekten bei Glühbirnen und Isolatoren führt als auch zu Pulsationseffekten bei Elektroskopblättern.

Die Phänomene sind weit davon entfernt, sich einer starren bzw. harten und schnellen Schematisierung zu unterwerfen. Die zweifache Bewegung der Pulsation (Konvergenz-Abspreizung) ist keineswegs die einzige Reaktion auf die Erregung an der Scheibe. Jede Art von Bewegung tritt auch isoliert auf. Manchmal gibt es nur Konvergenz, manchmal nur eine stärkere Abspreizung. Daß diese Unterschiede nicht mit „positiver und negativer Elektrizität“ erklärt werden können, ergibt sich daraus, daß die Annäherung ein und desselben geladenen Materials an ein identisch geladenes Elektroskop zu einer dieser gegensätzlichen Bewegungen führen kann. Die Annahme von Anziehung und Dissoziation als gegensätzliche Funktionen einer einheitlichen Energie macht hier, angesichts der Fakten, einen besseren Sinn, wie sich an den Effekten von Isolatoren aufeinander gezeigt hat.

 

Literatur

5. Reich, Wilhelm: „Orgonotic Pulsation: the differentiation of orgone energy from electro-magnetism. Presented in talks with an electro-physicist“ (insbesondere Part II: The orgonotic excitation of insulators. Questionable points in the concept of static electricity), International Journal of Sex-Economy and Orgone Research, Vol. 4, 1945

 

Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Orgonotic Excitation Effects II“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 4, S. 211-232.

Orgonotische Erregungseffekte II (1958) (Teil 6)

9. Dezember 2018

von David Boadella

5. Laden und Entladen des Elektroskops

Diese Aktivität ist dreierlei Art: wir können die Art und Weise unterscheiden, wie das Elektroskop sich lädt, die Art und Weise, wie es sich entlädt, und die Art und Weise, wie sich die geladenen Blätter bewegen, wenn sie erregt sind. Die folgende Beschreibung setzt kein Vorwissen über Elektroskop-Reaktionen voraus. Es schien am besten, alle beobachteten Phänomene genau und treu zu beschreiben, das Bekannte und Vertraute, als auch das Unbekannte und das Ignorierte. Auf diese Weise kann das gesamte Muster der Elektroskop-Reaktionen deutlicher hervortreten.

Ein Routineverfahren zum Laden eines Elektroskops besteht darin, ein gut isolierendes Material zu nehmen, es einige Male kräftig auf einem geeigneten Stoff zu reiben und es dann nahe an die Metallscheibe des Elektroskops heranzuführen. Glas auf Seide, Leder oder Filz gerieben ist eine häufige Wahl, desgleichen Hartgummi auf Wolle oder Flanell gerieben. Wenn sich das geriebene Material der Messingscheibe nähert, spreizen sich die Blätter des Elektroskops ab. Wird das geladene Material dann entfernt, ohne die Scheibe berührt zu haben, konvergieren die Blätter wieder: die Anregung hört auf. Wenn jedoch der Isolator in Kontakt mit der Scheibe kommen kann, bleibt die Ladung erhalten, wenn der Isolator entfernt wird. Ob dies unmittelbar nach dem Kontakt geschieht, oder ob wiederholte Kontakte oder ein längerer Kontakt erforderlich sind, scheint von der Art des verwendeten Materials und von der Feuchtigkeit zu dieser Zeit abhängig zu sein.

Eine zweite Methode ist als ‚Aufladen durch Induktion‘ bekannt. Der Isolator wird ohne Berührung in die Nähe der Scheibe gebracht und dort gehalten, während die Scheibe durch Berühren mit dem Finger ‚geerdet‘ wird. Der Finger wird entfernt und dann der Isolator: die Blätter des Elektroskops konvergieren, wenn der Finger die Scheibe berührt, und spreizen sich ab, wenn der Finger und der Isolator entfernt werden.

Ein drittes Verfahren zum Aufladen des Elektroskops durch Streichen des Flaschenhalses mit der Hand wurde bereits beschrieben und wird später detaillierter diskutiert.

Eine vierte Methode wurde erstmals 1939 von Reich beschrieben (siehe 10, 11). Seine drei Experimente sind von größter Wichtigkeit, da sie direkt zur Konstruktion des ersten Orgonakkumulators führten, um die Energie, deren Wirkungen er beobachtete, einzuschließen.

Kurz gesagt, fand Reich zufällig heraus, daß ein Paar Gummihandschuhe, die in der Nähe einiger seiner Bionpräparate liegengelassen worden waren, die Blätter eines nahe gelegenen Elektroskops ablenkten. Er überprüfte, ob die Handschuhe nicht auf eine andere Weise aufgeladen worden waren. Anschließend konnte er das gleiche Aufladen des Elektroskops erreichen, indem er ungeladene Handschuhe in Kontakt mit dem Abdomen oder den Genitalien einer vegetativ beweglichen Person ließ oder sie für eine bestimmte Zeit starker Sonnenstrahlung aussetzte. Einige Jahre später (1944) gelang es Reich, das Elektroskop mit Gummi aufzuladen, das einige Tage lang in einem Orgonakkumulator gelegen hatte (siehe 5). Denjenigen Kritikern Reichs, die seine psychiatrische und soziologische Arbeit loben, aber seine Physik vollkommen anders bewerten, stünde es gut zu Gesicht sich daran zu erinnern, daß sich das Experiment mit dem Gummi auf den Genitalien oder dem Bauch sich, wie so viele seiner anderen Experimente, direkt aus seiner psychiatrischen und sexualökonomischen Arbeit entwickelt hat. Diese drei Experimente am Elektroskop waren die ersten orgon-physikalischen Experimente, die jemals durchgeführt wurden.

Ich habe versucht, diese Experimente zu wiederholen und das Elektroskop so aufzuladen, wie Reich es beschrieben hat. Am schwierigsten war es mit dem ersten Paar Handschuhen, welches ich benutzte, das Kontrollexperiment durchzuführen, den ungeladenen Handschuh in der Nähe des Elektroskops zu halten und keine Auslenkung zu erhalten. Entgegen der Erwartung hatte ein Handschuh, den ich mit keinem der beschriebenen Mittel aufladen wollte, trotzdem eine Ablenkung der Blätter bewirkt. Es schien, daß der bloße Umgang mit dem Handschuh, ohne die Absicht, ihn zu erregen, irgendwie beim Handschuh eine starke Ladung hinterließ. Solange ich den Handschuh weiter handhabte, als ich ihn der Elektroskopscheibe näherte, blieb die Ladung bestehen. Erst durch das Eintauchen in Wasser wurde sie vollständig entfernt, und das Halten der Handschuhe mit einer Pinzette erwies sich als die einzige erfolgreiche Methode, Ladungen von der Hand zu eliminieren. Wenn der Gummihandschuh eine Viertelstunde lang auf den Haaren blieb und dann sehr vorsichtig entfernt wurde, um wirklich jedwede Reibung vernachlässigbar zu machen, zeigte sich am Elektroskop immer noch eine starke Aufladung. Dies steht in Einklang mit der Leichtigkeit, mit der ein Plexiglasstab aufgeladen werden kann, indem man einmal auf das Kopfhaar streicht (siehe 5 und den Brief von Dr. Raknes hier). Das Experiment des Aufladens des Handschuhs durch Kontakt mit der Haut des Bauches wurde ebenfalls zufriedenstellend wiederholt. Es war nicht möglich, das Experiment mit der Erstrahlung in der Sonne oder im Akkumulator zu wiederholen, wegen des anhaltenden regnerischen und feuchten Wetters in Nottingham in diesem Sommer.

Ich kaufte ein zweites Paar Handschuhe, die am Elektroskop überhaupt keine Reaktion zeigten, egal welche Behandlung sie erhielten. Das Material wurde als ‚satiniertes‘ Gummi beschrieben, aber warum dieser Handschuh überhaupt nicht reagieren wollte, ist immer noch ein Rätsel. Möglicherweise hat es etwas mit der Tatsache zu tun, daß nicht alle Gummiprodukte Isolatoren sind. Die Frage, welche chemischen Komponenten, Herstellungsverfahren und Energiezustände mit so großen Kontrasten bei nach außen hin so wenig differenzierten Materialien verbunden sind, scheint eine intensive Forschung zu erfordern. Zur Zeit ist darüber nur sehr wenig bekannt.

Ich habe versucht, die Elektroskopscheibe zu erden, um zu sehen, ob dies das Aufladen erschweren oder unmöglich machen würde. Bei Erdung gab es keine Reaktion auf einen geladenen Isolator, der in die Nähe der Scheibe gebracht wurde oder auf sie gelegt wurde. Aber die Erdung verhinderte nicht das Aufladen, das durch das Streichen des Glases mit der Hand erzeugt wurde. Es war auch möglich, die Gummiisolierung des zur Erdung verwendeten Drahtes zu streichen und auf diese Weise ein Aufspreizen der Blätter hervorzurufen. Diese letzte Tatsache zeigt am eindeutigsten die Antithese zwischen Orgon und Elektrizität. Isolatoren aus Gummi werden vom Elektriker verwendet, um zu verhindern, daß Elektrizität vom Draht nach außen fließt. Die gleiche Gummiisolierung erleichtert jedoch das Fließen von Orgon von außen nach innen zum Draht. Der Einwand, daß die ‚Spannung‘ der Hände hoch genug sei, um durch die Gummidämmung hindurchzugehen, wirft nur das ungelöste Problem auf, wie diese ‚Spannung‘ überhaupt in die Hände gelangt. Er wird auch durch Reichs Entdeckung widerlegt, daß der Orgonfluß in Isolatoren effektiver ist, wenn die Isolierung sehr gut ist: „Je besser der Isolator, desto ausgeprägter ist die Reaktion – Styropor ist als hervorragender Isolator bekannt. Es gab immer diese Reaktion” (5, S. 119).

Das Routineverfahren zum Entladen des Elektroskops besteht darin, die Scheibe mit der Hand oder mit Metall zu berühren, d.h. die Blätter zu „erden“. Wir dürfen jedoch nicht davon ausgehen, daß das, was geschieht, notwendigerweise etwas mit der Erdung zu tun hat. Eine Reihe von Beobachtungen widerspricht dieser Annahme.

Bei ein oder zwei Gelegenheiten hatte ich große Schwierigkeiten das Elektroskop zu entladen, nachdem es mit den Händen auf dem Glas der Flasche geladen worden war. Metall oder meine Hand auf der Scheibe hatten keine Wirkung. Nur das Eintauchen von drei Vierteln des Elektroskop-Glases in Wasser brachte bei solchen Gelegenheiten die Blätter dazu sich zu entladen.

 

Literatur

5. Reich, Wilhelm: „Orgonotic Pulsation: the differentiation of orgone energy from electro-magnetism. Presented in talks with an electro-physicist“ (insbesondere Part II: The orgonotic excitation of insulators. Questionable points in the concept of static electricity), International Journal of Sex-Economy and Orgone Research, Vol. 4, 1945

10. Reich, Wilhelm: DREI VERSUCHE AM STATISCHEN ELEKTROSKOP, Rotterdam, 1939

11. Reich, Wilhelm: „Three experiments with rubber at the electroscope (1939)“, Orgone Energy Bulletin, Vol. 3, No. 3, 1951

 

Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Orgonotic Excitation Effects II“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 4, S. 211-232.

Orgonotische Erregungseffekte II (1958) (Teil 5)

6. Dezember 2018

von David Boadella

4. Anziehung und Dissoziation bei Isolatoren

Es war so verstörend an den Unterschieden zwischen den orgon-physikalischen und den akademischen Erklärungen der Elektroskop-Reaktionen, daß sie durch sorgfältige Beobachtungen so leicht aufzulösen sein sollten, doch, als ich zu sorgfältigen Beobachtungen kam, die Schwierigkeiten nicht im geringsten abnahmen, sondern vielmehr zunahmen. Die elektrische Erklärung sagt einfach, und mit dem Dogmatismus eines physikalischen Gesetzes, daß „gleichsinnige Ladungen sich abstoßen, ungleichsinnige Ladungen sich anziehen“. Wenn man ein Elektroskop positiv auflädt und einen negativ geladenen Stab heranführt, sollten von daher die Blätter konvergieren. Wenn man einen zweiten positiv geladenen Stab nimmt, sollten die Blätter um so mehr divergieren.

Üblicherweise werden Gummi und Glas als die Materialien genommen, die beim Reiben an geeigneten Materialien eine negative bzw. positive Ladung annehmen. Es sollte eine ganz einfache Sache sein, das Elektroskop mit Gummi aufzuladen und dann etwas geladenes Glas zu nehmen und zu sehen, was passiert. Ich habe das bei vielen Gelegenheiten gemacht. Manchmal konvergierten die Blätter und die elektrische Theorie der positiven und negativen Elektrizität schien vollkommen erwiesen. Aber zu anderen Zeiten divergierten die Blätter um so mehr, genau wie Reich es beschrieben hatte. So scheinen sowohl der Elektrophysiker als auch der Orgonom „in gewisser Weise“ recht zu haben. Ich versuchte herauszufinden, ob ich unfair war oder ob ich die Ergebnisse irgendwie präjudizierte. Ich überprüfte sorgfältig, ob das Elektroskop tatsächlich seine positive Ladung behalten hatte, bevor ich die negative nahm und umgekehrt.

Ich legte das Elektroskop zur Seite mit dem inneren Gefühl, daß es irgendwie „fehlerhaft“ sein müsse und „verrücktspiele“, und begann mit verschiedenen Isoliermaterialien zu experimentieren. Ich wählte hauptsächlich die Materialien aus, die ich für gut geeignet befunden hatte: Glas, Gummi, Polyäthylenfolie, Hartgummi, Plexiglas und Äthylen. Ich lud jedes dieser Materialien auf, indem ich sie durch meine Hände zog oder über meine Haare führte, und bestätigte, daß sie tatsächlich geladen waren, indem ich sie über die Elektroskopscheibe hielt, um zu sehen, ob sich die Blätter bewegten, und dann feststellte, ob sie sich gegenseitig abstießen oder anzogen.

Der Ethilon-Streifen wurde, wenn er frei aufgehängt war und von Luftströmungen nicht gestört wurde, stark von geladenem Polyäthylen, Gummi, Hartgummi und Glas angezogen, von Plexiglas jedoch abgestoßen. Schlußfolgerung, nach der elektrischen Theorie: Ethilon und Plexiglas sind gleichsinnig geladen; antithetisch zu ihnen, aber in Beziehung zueinander gleichsinnig geladen, sind Polyäthylenfolie, Gummi, Hartgummi und Glas. Doch wir wissen, daß Gummi und Glas eine entgegengesetzte Ladung haben sollten und von daher Ethilon entweder durch Gummi oder Glas abgestoßen werden sollte.

Wenn ein Stück geladenes Gummi suspendiert war, wurde es von Plexiglas, Ethilon und Glas angezogen; und abgestoßen von Ebonit, Polythen und einem anderen Stück Gummi. Fazit nach der elektrischen Theorie: Glas hat die gleiche Ladung wie Ethilon und Plexiglas. Aber wir haben bereits gefunden, daß Glas Ethilon anzieht, und daher von ungleicher Ladung sein sollte.

Wenn eine dünne Polyäthylenfolie frei aufgehängt war, wurde sie von Gummi und Hartgummi abgestoßen, aber von Glas, Äthylen und Plexiglas angezogen. Die Sache scheint jetzt anzufangen einfach zu werden: Glas muß von gleicher Ladung sein wie Ethilon und Plexiglas, und die Tatsache, daß Glas Ethilon anzieht, muß ein ‚Fehler‘ sein. Im Laufe der immer neuen Wiederholungen dieser Beobachtungen stellte ich fest, daß ich das geladene Plexiglas dazu bringen konnte, das geladene Ethilon anzuziehen, um es dann abzustoßen und danach wieder anzuziehen. Es war genau so, als ob das Material einen eigenen Kopf hatte und bewußt unvorhersehbar war, um mich durcheinander zu bringen. So verhalten sich Äthylen und Styropor manchmal so, als wären sie gleich geladen und manchmal wie von ungleicher Ladung. In einem Moment sind sie positiv und im nächsten negativ.

Was ich beobachtete, war genau parallel zum Verhalten von Glas und Gummi am Elektroskop; manchmal eine Wirkung in die eine Richtung und manchmal in die gegensätzliche Richtung. Je mehr ich versuchte, das Material ‚festzunageln‘ und es sich in der einen oder anderen Richtung eindeutig verhalten zu lassen, desto mehr mußte ich erkennen, daß dieser Prozeß nicht starr ist und nicht auf die Frage reduziert werden kann, ob bestimmte Materialien regelmäßig mit zu wenigen oder zu vielen Elektronen hinterlassen werden, wenn sie gerieben werden. Tatsächlich ist die Theorie der positiven und negativen Elektrizität, so sie auf die Anziehung und Abstoßung von Isolatoren angewandt wird, nur haltbar, wenn man die Gelegenheiten übersieht und ignoriert, wo Gummi und Glas gegenseitig ihre Erregung des Elektroskops verstärken und die Gelegenheiten, wenn anscheinend identisch geladene Materialien sich gegenseitig anziehen.

Anschließend konnte ich ein kleineres Stück Ethilon aufnehmen, indem ich den großen Streifen etwa einen Zoll darüber hielt. Das kleinere Stück sprang dann aufwärts und klebte genau so, wie man es erwarten würde, wenn die beiden Stücke ungleiche Ladungen hätten. Aber beide Stücke stammten von einem Originalstreifen, beide waren auf die gleiche Weise gerieben worden, und beide hatten tatsächlich durch Einwirkung auf das Elektroskop zuerst gezeigt, daß sie geladen waren.

Ähnliche Erwägungen führten Reich zu der Schlußfolgerung, daß die Phänomene besser erklärt werden könnten, wenn man annimmt, daß die Isolatoren mit ein und derselben Energie aufgeladen sind, aber daß sie zwei gegensätzliche Funktionen aufweist: Anziehung und Dissoziation (oder Abstoßung). „Die Orgonenergie besteht also nicht aus zwei gegensätzlichen Fluida, sondern aus zwei antithetischen Funktionen, Anziehung und Abstoßung; und jede dieser Funktionen hat eine spezifische Beziehung zur Natur der Substanz“ (5, S.136). Diese Schlußfolgerung ist nicht so revolutionär, wie sie sich anhört. Wenn wir nach dem Ursprung des Begriffs positive und negative Elektrizität, wie er für Isolatoren verwendet wird, suchen, finden wir:

Die Elektrifizierung von mit Seide geriebenem Glas wurde früher vitreous genannt (von Vitrum das lateinische Wort für Glas); diejenige, die von Siegellack oder Harz, das mit Flanell gerieben wurde, abgeleitet wurde, wurde resinous genannt. Diese Namen sind jedoch längst von anderen verdrängt worden, da Glaselektrizität aus Substanzen, die Harzelektrizität erzeugten, gewonnen werden konnte und umgekehrt, indem lediglich das Material des Gummis verändert wurde. (12, S. 60)

Man weiß, daß, wenn rauhes Glas auf glattem Glas gerieben wird, die beiden Glasstücke Anziehung zeigen und daher von ungleicher Ladung sein sollen. Der Zustand der Substanz, die Art und Weise, in der sie angeregt wird, und die Intensität ihrer anfänglichen Ladung sind alles Faktoren, die bestimmen, ob es die anziehende oder die dissoziative Funktion ist, die ausgedrückt wird.

Nach dieser Beschreibung der Erregung eines Isolators durch einen anderen ist es leichter, die Aktivität der Elektroskopblätter zu verstehen.

 

Literatur

5. Reich, Wilhelm: „Orgonotic Pulsation: the differentiation of orgone energy from electro-magnetism. Presented in talks with an electro-physicist“ (insbesondere Part II: The orgonotic excitation of insulators. Questionable points in the concept of static electricity), International Journal of Sex-Economy and Orgone Research, Vol. 4, 1945

12. Poyser, A.W.: MAGNETISM AND ELECTRICITY, Longmans, Green, & Co. 1895

 

Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Orgonotic Excitation Effects II“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 4, S. 211-232.

Orgonotische Erregungseffekte II (1958) (Teil 1)

26. November 2018

von David Boadella

 

[Vorbemerkung des Übersetzers: Der erste Artikel findet sich hier ff.]

1. Einige theoretische Überlegungen

Die in der letzten Ausgabe dieser Zeitschrift (1) beschriebenen Erstrahlungseffekte wurden von einer Reihe von Personen wiederholt. Ich antwortete auf den Brief des National Physical Laboratory (NPL) und wies in erweiterter Form auf die Widersprüche zwischen ihrer Erklärung und dem beobachteten Verhalten der Glühbirnen hin. Eine kurze Antwort ist eingegangen, die ihre Überzeugung wiederholt, daß die Phänomene abhängen von „der Art und dem Druck des gegebenen Restgases, der Zusammensetzung des Glases der Glühbirne (da es die isolierenden Eigenschaften und die Leichtigkeit des Elektrisierens beeinflußt) und wahrscheinlich von mehreren anderen Faktoren, wie die atmosphärische Luftfeuchtigkeit zu der Zeit“. Sie schließen das Thema, indem sie hinzufügen: „Es gibt unserer Meinung nach wenig zu gewinnen, wenn man der Sache weiter nachgeht, außer wenn man sich dafür entscheidet … durch sorgfältig kontrollierte Experimente.“ Die Bedeutung der weiteren Experimente, von denen ihnen berichtet wurde, wird ignoriert.

Zwei Kritikpunkte sind von einem Leser des Originalartikels aufgeworfen worden. Der erste bezieht sich auf den Vakuumdruck und der zweite auf die Ladung der Hände. Beide sind von Interesse für die Art von Komplikationen, die auftauchen, sobald jemand versucht zu zeigen, daß die Leuchteffekte „einfach genug“ durch orthodoxe physikalische Konzepte erklärt werden können.

Es wurde von dieser Person angeführt, daß, in Übereinstimmung mit der Anmerkung der NPL, je weniger Gas es gibt, desto geringer die Lichtausbeute sei. Um diese Sichtweise zu unterstützen, hat sie eine 20 Jahre alte Vakuumlampe mit geradem Heizfaden vorgelegt und mich aufgefordert, hier irgendwelches Licht hervorzurufen. Sie sagte, daß diese Lampe ein viel höheres Vakuum als moderne vakuumgefüllte Lampen hätte und deshalb nicht leuchte. (Vergleiche das mit der NPL-Aussage: „Wir wiederholen, daß der Grad des Vakuums den Effekt bestimmen wird, so daß einige gut gemachte moderne Vakuumlampen ihn nur schwer oder gar nicht zeigen könnten.“) Zur weiteren Unterstützung ihrer Ansicht, erklärte sie kategorisch, daß unterhalb eines bestimmten Drucks, ein Vakuum überhaupt nicht leuchte, und daß der Druck von 0,5 Mikron (in dem Artikel angegeben und von Reich verwendet) unerreichbar sei.

Was man beachten muß, um den Widerspruch, der die Vakuumfrage umgibt, zu entwirren, ist der Kontrast zwischen der normalen Methode eine Erstrahlung im Vakuum hervorzurufen und den Ergebnissen, die über die Hände berichtet werden und von Dr. Ola Raknes mit Vakuums bestätigt wurde, deren Druck bekannt war. Dr. Raknes erhielt seine Ergebnisse bei Vakuums mit einem Druck von 1/10 000 und 1/100 000 einer Atmosphäre. Hier eine Beschreibung aus einem Lehrbuch über Physik über den normalen Ablauf der Vakuumentladung:

Wenn die Luft nach und nach aus einer Röhre mit zwei Plattenelektroden gepumpt wird, die auf einer Potentialdifferenz von einigen tausend Volt gehalten werden, erscheint eine leuchtende Entladung, wenn sich der Druck einem 1/1000 einer Atmosphäre nähert. Angenommen, wir setzen die Entleerung unserer Entladungsröhre fort. Die leuchtenden Wolken schrumpfen von der Mitte der Röhre zurück, und der dunkle Raum nimmt zu, bis der Druck in der Röhre nur ein Millionstel einer Atmosphäre ist (d.h. 0,75 Mikron), die leuchtenden Erscheinungen im Gas haben vollständig aufgehört, obwohl Elektrizität immer noch geleitet wird. Die Wände der Röhre leuchten mit einem grünlichen Licht. Unsichtbare „Strahlen“ durchdringen die Röhre. Diese Strahlen sind ein Hagel von Elektronen, die sich mit großer Geschwindigkeit vom negativen Pol zum positiven bewegen. (2, S. 292)

Bei der 20 Jahre alten Glühbirne, die mir übergeben worden war, erwies es sich als sehr schwierig, mit den Händen irgendwelches Licht zu erhalten. Aber sie wurde leicht zum Leuchten gebracht, indem man sich mit einem geladenen Isolator irgendeiner Art näherte. Ich habe nicht herausgefunden, wie hoch der Druck dieser Lampe ist. Die G.E.C. hat mich jedoch informiert, daß die modernen 25 Watt Glühbirnen mit einem Druck von 0.0001 mm, d.h. 1 Mikron hergestellt werden. Dennoch muß die Leichtigkeit dieser Erstrahlung der NPL-Aussage [National Physical Laboratory] gegenübergestellt werden: „Von daher wird die schnellstmögliche Annäherung eines geladenen Hartgummistabes keine Wirkung zeitigen, da sie immer noch nicht schnell genug ist.“

Der zweite Kritikpunkt der gleichen Person war eine direkte Leugnung, daß die Ladung der Haut in Millivolt meßbar sei. Sie behauptete, daß die Hände leicht mehrere tausend Volt enthalten könnten, deshalb gäbe es nichts Bemerkenswertes bei den Erstrahlungseffekten. Sie sah daher keinen Grund, die Aussage zu akzeptieren, daß die elektrische Spannung der Hände tausendmal schwächer sei als die, die zur Erzeugung der normalen Vakuumentladungen verwendet wurde, wie oben zitiert. Die oszillographischen Experimente von Reich, zitiert als Beweis für die niedrige Spannung der Haut, akzeptiere sie nicht, da, wie sie sagte, „der Oszillograph keine Spannung mißt, er mißt Strom“. Der Punkt ist von einiger Wichtigkeit, denn, wenn man ohne Zweifel zeigen kann, daß die normale elektrische Spannung der Hände in der Tat im Bereich von Millivolt liegt, dann wird es tatsächlich sehr schwierig zu verstehen, wie das sanfteste Streicheln zu einer Erstrahlung führen kann, die Tausende von Volt erfordert. Ein Blick auf Reichs Bericht über seine Experimente machte deutlich, daß es sich um Spannung handelte, die er gemessen hatte. Reich verband die an der Haut befestigten Elektroden mit Hilfe von Drähten an die Gitterplatten in der Elektronenröhre seines Oszillographen. Ein Elektronenstrom floß durch diese Platten von einer Kathode zu einer Anode. Jede Ladung auf den Platten lenkte den Elektronenstrahl ab, und die Ablenkung konnte auf einem Bildschirm beobachtet werden.

Der Oszillograph wurde auf 10 Millivolt kalibriert. Die beobachtete Ablenkung konnte daher direkt mit der Kalibrierung verglichen werden. Der Widerstand des Oszillographen betrug 2 Millionen Ohm, die von den Händen erzeugte Strommenge war daher außerordentlich niedrig: Reich gibt sie als 0.000001 eines Ampere an, d.h. 1 Mikroampere (3).

Im folgenden muß der Unterschied zwischen der Ähnlichkeit von Einheiten und der Äquivalenz von Einheiten, der im ersten Artikel referiert wurde, ständig im Auge behalten werden. Es ist dann unerheblich, ob wir den Ausdruck „Statik“ verwenden oder „Orgon“, um bestimmte Effekte zu beschreiben, solange wir uns daran erinnern, daß „Statik“ mit Eigenschaften einhergeht, die die Strom-Elektrizität nicht besitzt. Wenn man in ein Geschäft geht, das elektrische Geräte oder elektrische Meßvorrichtungen verkauft, und nach einem Elektroskop fragt, ist die typische Reaktion „Ein Elektroskop? Was ist das? Wofür wird es verwendet?“. Dann kommt vielleicht eine Erinnerung an die Physik der Sekundarstufe zurück und ihnen wird dunkel bewußt, was ein Elektroskop ist. Der Begriff „Statik“ betont die Ähnlichkeiten zwischen Effekten bei Isolatoren und Effekten bei Metall und Drähten, die Unterschiede werden tendentiell vergessen oder übersehen, sie sind nicht wichtig. Der Begriff „Orgon“ betont die Ähnlichkeiten zwischen den Reaktionen von Isolatoren und Reaktionen des Lebendigen. Der Begriff „Elektrizität“ weist auf die mit Batterien verbundenen Phänomene und die Bewegung von Drähten in Magnetfeldern hin. Es ist lehrreich, sich daran zu erinnern, wie der Begriff auf Isolatoren angewendet wurde. Einige der frühesten Beobachtungen von „statischen“ Effekten wurden von Thales mit Bernsteinstücken gemacht. „Thales wußte nicht, warum Bernstein leichte Objekte anziehen konnte. Er wußte nur, daß Bernstein nach dem Reiben eine neue Eigenheit angenommen hatte. Wir sagen, daß der Bernstein elektrifiziert wurde, oder daß er durch Reiben ‚Elektrizität‘ erworben hat. Das Wort ‚Elektrizität‘ wurde gewählt, weil der griechische Name für Bernstein ‚Elektron‘ ist! Wenn wir also sagen, daß ein Kamm aus Hartgummi oder Plastik elektrisch aufgeladen (elektrisiert) wurde, sagen wir tatsächlich, daß der Kamm ‚bernsteinisiert‘ worden ist; der Kamm verhält sich wie Bernstein, wenn er gerieben wird“ (4, S. 306).

Es war das Erwägen der Unterschiede zwischen ‚Statik‘ und Elektrizität, und die Ähnlichkeiten zwischen ‚Statik‘ und atmosphärischer Orgonenergie, die Reich zu der Schlußfolgerung brachte, daß „der Begriff der ‚Reibungselektrizität‘ durch den der orgonotischen Erregung ersetzt werden könnte! ‚Reibungselektrizität‘ wäre dann nicht mehr als ein uninteressanter Spezialfall orgonotischer Erregung, der auf passiv absorbiertem Orgon basieren könnte, oder Orgon, das als Teil des lebendigen Funktionierens ausgestrahlt wird“ (5, S. 115).

 

Literatur

1. Boadella, David: „Some orgonotic lumination effects“. Orgonomic Functionalism, Vol. 5, No. 2, 1958

2. Taylor, Sherwood: THE WORLD OF SCIENCE, Heinemann, 1936

3. Reich, Wilhelm: EXPERIMENTELLE ERGEBNISSE ÜBER DIE ELEKTRISCHE FUNKTION VON SEXUALITÄT UND ANGST, Kopenhagen, 1937

4. Dees, Bowen C.: FUNDAMENTALS OF PHYSICS, Philadelphia, 1945

5. Reich, Wilhelm: „Orgonotic Pulsation: the differentiation of orgone energy from electro-magnetism. Presented in talks with an electro-physicist“ (insbesondere Part II: The orgonotic excitation of insulators. Questionable points in the concept of static electricity), International Journal of Sex-Economy and Orgone Research, Vol. 4, 1945

 

Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Orgonotic Excitation Effects II“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 4, S. 211-232.

Einige orgonotische Erstrahlungseffekte. Eine vorläufige Mitteilung (1958) (Teil 6)

30. Juli 2018

von David Boadella

Erklärungen (Fortsetzung)

Die Beobachtung, daß das Streicheln von Glühbirnen sie zur Leuchten bringt, während heftige Reibung entweder eine viel schwächere Wirkung oder gar keine Wirkung hervorbringt, ist also eine direkte Bestätigung der 1944 getroffenen Annahme Reichs „statische Elektrizität im üblichen Sinne ist überhaupt kein Strom“. In einem Artikel über „orgonotische Pulsation“ (siehe 5) kommt er zu dem Schluß: „Es ist nur eine Frage der Konvention, ob wir die ‚Elektrizität‘ der Alten mit dem Orgon identifizieren und den Begriff der Elektrizität für die orgonotischen Phänomene. In diesem Fall müßten wir ein neues Konzept für das entwickeln, was seit Faraday, Ampere und Volta als Elektromagnetismus bekannt ist. Oder wir müssen das Konzept der Elektrizität der Alten fallenlassen, die jeweiligen Phänomene orgonotisch nennen und den Begriff der Elektrizität auf jene Phänomene beschränken, die man durch die Bewegung von Drähten in Magnetfeldern erzielt“ (S. 122). In diesem Zusammenhang ist die Reaktion eines elfjährigen Jungen interessant, dem beiläufig vom Verhalten der Glühbirne im Dunkeln beim Reiben erzählt wurde. Im Gegensatz zu der Skepsis, der Verwirrung und dem abwehrenden Lachen der Experten gab er eine direkte, gefühlsmäßige Reaktion: „Oh, was soll‘s? Das ist die Elektrizität in deinen Händen, nicht wahr?“ Dieser Junge wußte kaum etwas von Wissenschaft und wußte sicherlich nichts von Millivolt. Aber er mußte die Energie in seinen Händen gefühlt haben, und da er keine bessere Bezeichnung für diese Energie hatte, nannte er sie „Elektrizität“.

Sobald man diesen Schritt macht, galvanische Elektrizität von den orgonotischen Phänomenen zu unterscheiden (von denen die ‚Statik‘ nur ein Sonderfall ist), beginnen einige verwirrende Widersprüche Sinn zu machen. Reich hat in CANCER BIOPATHY beschrieben, wie er sich der Tatsache bewußt wurde, daß die Energiemenge, die an der Hautoberfläche nachweisbar war, in keinem Verhältnis zur minimalen Ladung stand, die in Millivolt gemessen wurde. Er weist darauf hin, daß, obwohl „wir empfindliche Voltmeter beeinflussen können, indem wir sie berühren, das Ausmaß dieser Reaktionen so unendlich klein ist, – verglichen mit den Energiemengen im Organismus, – daß wir keine Verbindung sehen können“ (1, S. 6).

Eine ähnliche Diskrepanz besteht in der Annahme, daß das, was mit dem Elektroskop, dem Standardinstrument der Elektrostatik, gemessen wird, mit Spannung gleichgesetzt werden kann. Tatsächlich haben wir zwei radikal verschiedene Energieformen, die beide in ein und derselben Einheit gemessen werden. Reich beschreibt diese Diskrepanz wie folgt: „Wir laden ein Elektroskop mit Energie aus unseren Haaren, so daß das Elektroskopblatt um 45° oder 90° abgelenkt wird. Wir können den gleichen Effekt durch Anlegen eines elektrischen Stroms mit hoher Spannung an das Elektroskop erzeugen. Eine Einheit der Orgonladung entspricht jener Spannung, die notwendig ist, um die gleiche Ablenkung des Elektroskopblatts zu erzeugen. Wir finden auf diese Weise, daß, wenn wir nur einmal sanft durch unser Haar streichen, wir Energiemengen von mehreren hundert Volt abnehmen können“ (4, S. 113).

Die Auswirkungen sind relevant und wichtig. Obwohl eine bestimmte Menge an Orgonenergie einer gegebenen Menge an elektrischer Energie entsprechen kann, sind sie in keiner Weise äquivalent. Obwohl wir Energie abziehen können, die Hunderten von Volt ‚entspricht‘, können wir nicht durch Streichen unserer Haare ein Voltmeter veranlassen, eine Ablenkung zu registrieren, die anzeigt, daß unser Haar mit einer Spannung von Hunderten von Volt elektrisch geladen ist. Effekte, die sehr leicht und einfach mit Orgonenergie aus den Händen erzeugt werden können, können nur durch eine elektrische Spannung reproduziert werden, die tausendmal größer ist als die elektrische Spannung der Hände.

Ein nützliches Ergebnis dieser Befunde ist, daß sie eine Antwort auf jene Kritiker von Reichs Interpretationen seiner Vacor-Experimente liefern, die behaupten, daß er ‚nichts Neues‘ getan hat und daß seine blaue Erstrahlung im Vakuum unter elektrischer Spannung eine bewährte Tatsache in der klassischen Physik darstellt und nichts mit Orgonenergie zu tun hätte. Was neu war, war nicht die Erzeugung von bläulicher Erstrahlung im Vakuum, sondern die Erkenntnis, daß diese funktionell identisch ist mit anderen Beispielen bläulicher Erstrahlung in der Natur und sich ebensogut, wenn nicht besser, orgonomisch erklären läßt. Soweit ich weiß, hat Reich niemals die allein mit Hilfe der Hände hervorgerufene Erstrahlung im Vakuum nachgewiesen. Die Tatsache, daß dies möglich ist, ist eine überzeugende Bestätigung der orgonomischen Hypothese. Die Kraft der Erstrahlung mit Hilfe der Hände entspricht voll und ganz der Kraft, die man von dem „elastischen Kissen“ zwischen den Handflächen erwarten kann, wie es Reich auf dem Röntgenfilm photographiert hat (6). Die größere Brillanz der 25- und 15-Watt-Glühbirnen gegenüber den Glühbirnen mit höherer Leistung und die Beobachtung, daß die gasgefüllten Glühbirnen ‚gedämmt‘ und ‚beschlagen‘ schienen, steht voll im Einklang mit Reichs Entdeckung, daß die im Vakuum erzielbaren Impulsraten größer sind als die aus gasgefüllten Geiger-Röhren: „Materie in Form von Gasmolekülen oder Luftmolekülen BEHINDERT die Energiefunktion der kosmischen OR-Energie, … Or-Energie ist am stärksten bzw. ‚schnellsten‘ im gasfreien Raum“ (7, S. 252).

 

Literatur

1. Reich, W.: CANCER BIOPATHY. Orgone Institute Press, 1948
4. Reich, W.: EXPERIMENTELLE ERGEBNISSE ÜBER DIE ELEKTRISCHE FUNKTION VON SEXUALITÄT UND ANGST. Sexpolverlag, Copenhagen, 1937
5. Reich, W.: “Orgonotic Pulsation” International Journal of Sex-Economy and Orgone Vol. 3, 1944
6. Reich, W.: „Orgonotic light functions. 2. An X-ray photograph of the excited orgone energy field of the palms (1944)“ Orgone Energy Bulletin Vol.1, No.2, 1949
7. Reich, W.: „The Orgone Energy Charged Vacuum Tubes (VACOR) (1948)“ Orgone Energy Bulletin Vol. 3, No. 4 ,1951

 

* Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Some Orgonotic Lumination Effects“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 3, S. 139-150.

Einige orgonotische Erstrahlungseffekte. Eine vorläufige Mitteilung (1958) (Teil 5)

26. Juli 2018

von David Boadella

Erklärungen (Fortsetzung)

Aus diesen Reaktionen wird deutlich, daß die einzigen Menschen, die die Glühbirneneffekte nicht ignorieren, diejenigen sind, die sie zufällig für sich entdeckt haben; daß es keine „offizielle“ Erklärung dafür gibt, weil es keine „offizielle“ Anerkennung dafür gibt; und daß die erste Reaktion, wenn das Thema erwähnt wird, die ist, so zu tun, als ob es nicht für „ernsthafte wissenschaftliche“ Überlegungen geeignet wäre, sondern, wie psychische Forschung oder Fliegende Untertassen, nur Witze und Spott verdient. Entweder wird die ganze Sache als Scherz betrachtet (wie die Haltung des Managers von A.E.I. nahelegt); oder ich war das Opfer einer Halluzination (wie von einem Lehrer scherzhaft vorgeschlagen); oder es ist „bloß eines dieser Dinge“, ein guter Partytrick und etwas, um das sich der Physiker, wie um so viele Dinge auf dem Jahrmarkt, in der Seance oder am Tisch des Wahrsagers, nicht zu kümmern braucht.

Die zweite Reaktion, die nur eintritt, wenn das Phänomen unmißverständlich nachgewiesen wird oder wenn der Physiker bereit ist, deine Aussage in gutem Glauben zu akzeptieren, beinhaltet den Versuch, etwas zu tun, was die Lehrbücher nicht getan haben, die Tatsache in Begriffen der bestehenden Theorie zu erklären. („ … ein elektrostatisches Feld … nehme ich an“).

Wenn der Physiker überzeugt werden kann, eine ernsthafte Antwort auf die Frage „Was ist die Energie, die die Glühbirnen zum Aufleuchten bring?“ zu geben, wird seine Antwort sich in Begriffen von elektrostatischen Konzepten bewegen. Es wird angenommen, daß die verschiedenen Phänomene der Elektrostatik mit demselben Konzept erklärt werden können, mit dem die Wirkung von Batterien und Dynamos bei der Erzeugung eines elektrischen Stroms erklärt werden. Somit können die gleichen elektrischen Einheiten, falls notwendig, verwendet werden, um sowohl „statische“ als auch „Strom-“ Effekte zu beschreiben.

Die einzigen Fälle von blaugrüner Erstrahlung in einem Vakuum, die ich gefunden habe, treten auf, wenn eine hohe elektrische Spannung zwischen den Elektroden einer speziell konstruierten Vakuumröhre erzeugt wird. (Im Falle des einen Beispiels, das vom A.E.I.-Manager zitiert wurde, wurde auf die speziell konstruierte Röhre und die Elektroden verzichtet, aber die Hochspannung blieb erhalten). Die erforderliche Spannung wird offensichtlich entsprechend dem Druck des Restgases und dem Abstand zwischen den Elektroden variieren, es kann jedoch normalerweise erwartet werden, daß sie sich in dem Bereich von 100 bis 1000 Volt bewegt. Dies war der Bereich, den Reich in seinen Vakuumexperimenten (siehe 3) mit 0,5 Mikrometer Druck und mit 15 cm Abstand zwischen den Elektroden verwendete. Im Vergleich scheinen die vom A.E.I.-Manager genannten Volt für eine 25-Watt-Glühbirne hoch, aber möglicherweise ist dies auf die Tatsache zurückzuführen, daß Glühlampen nicht mit Elektroden ausgestattet sind. (Reich berichtet jedoch an anderer Stelle, daß er eine Spannung von 1000 bis 2000 Volt verwendete, um die Vakuum-Erstrahlung auszulösen. Siehe 9). Was die Rolle der Elektroden spielte, als die Spannung von 12 000 angelegt wurde, weiß ich nicht; möglicherweise war es „nur“ das Glas und nur die Wolframverdrahtung oder möglicherweise sind Elektroden nicht einmal notwendig, was wahrscheinlich erscheint.

Alle Fälle von Vakuum-Erstrahlung, von denen ich gelesen habe, beruhten auf einer elektrischen Spannung, die per Drahtverbindung von einem Dynamo, einer Batterie oder einer Induktionsspule irgendeiner Art geliefert wurde. Erst wenn dem Physiker das „eigentümliche“ Ereignis präsentiert wird, daß eine Glühbirne ohne jegliche Drahtverbindungen leuchtet, sieht er sich zu der Annahme genötigt, daß ein elektrostatisches Feld eine Vakuumerstrahlung ins Werk setzten kann. Zuvor war das alles irrelevant. Aber sobald diese Annahme verzweifelt getroffen wurde (und wenn der Versuch, das Ganze mit einem Lachen abzutun, gescheitert ist), zeigt eine kleine Überprüfung, daß sie unhaltbar ist, solange wir davon ausgehen, daß die elektrostatische „Elektrizität“ die gleiche ist wie die faradische Elektrizität, der elektrische Strom.

Die elektrische Spannung, die benötigt wird, um die Vakuumerstrahlung auszulösen, fällt in einen Bereich von Hunderten von Volt bis zu Tausenden von Volt. Wir müssen fragen, ob es möglich ist, daß die Hände, die die Glühbirne sanft streichen, diese hohen Spannungen liefern können? Die Frage erscheint lächerlich, „eigentümlich“ und von daher neigen wir dazu der ganzen Frage und deren Antwort auszuweichen. Es wurde gezeigt, daß die elektrische Ladung der Hautoberfläche, gemessen mit Hilfe des Oszillographen, im Bereich von Millivolt liegt (4). Die Hände bilden hier keine Ausnahme. Wir stehen vor der Tatsache, daß die Hände, deren Spannung vernachlässigbar ist, „durch Erzeugung eines elektronenstatischen Feldes“ eine Spannung herstellen können, die sehr beträchtlich ist und zu brillanten Lichteffekten führen kann.

Weitere Überlegungen zeigen, daß die elektrostatische Theorie zur Erklärung der Vakuumerstrahlung nicht ausreicht. Die höchsten Ladungen der ‚Elektrostatik‘ werden durch die heftigsten Formen der Reibung erzeugt, wie z.B. in der Wimshurstmaschine [siehe folgenden Absatz!]. Aber wenn die Vakuumbirne kräftig gerieben wird, sogar auf Seide, entsteht kein Glühen, solange die Hand die Seide nicht festhält und die Seide die aufleuchtend-machende Kraft der Hand behindert.

[Anmerkung des Herausgebers in der nächsten Ausgabe von Orgonomic Functionalism:] Die hohen Ladungen, die von der Wimshurstmaschine produziert wurden, seien durch heftige Reibung erzeugt worden. Das ist falsch. Nur sehr frühe elektrische Maschinen verwendeten Reibung, um Ladung zu erzeugen. Die Wimshurstmaschine akkumuliert ihre Ladung durch Induktion ohne direkten Kontakt zwischen den Drehtellern.

 

Literatur

3. Reich, W.: „Orgonotic light functions. 3. Further physical characteristics of Vacor Lumination (1948)“ Orgone Energy Bulletin Vol. 1, No. 3, 1949
4. Reich, W.: EXPERIMENTELLE ERGEBNISSE ÜBER DIE ELEKTRISCHE FUNKTION VON SEXUALITÄT UND ANGST. Sexpolverlag, Copenhagen, 1937
9. Reich, W.: „Meteorological Functions in Orgone-charged Vacuum Tubes“ Orgone Energy Bulletin Vol. 2, No. 4, 1950

 

* Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Some Orgonotic Lumination Effects“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 3, S. 139-150.

Einige orgonotische Erstrahlungseffekte. Eine vorläufige Mitteilung (1958) (Teil 4)

22. Juli 2018

von David Boadella

Erklärungen

Es gibt im Großen und Ganzen drei Arten von Erklärungen, die für jedes gegebene Phänomen dargeboten werden können: eine mechanistische Erklärung, eine funktionelle Erklärung oder als Lösung der Rückgriff es als Mystizismus abzutun. Es ist eine vertraute Erfahrung, daß wenn das mechanische Weltbild durch ein Ereignis herausgefordert wird, welches die orthodoxe Wissenschaft nicht länger ignorieren kann, sie versucht, es entweder als ‚bloß‘ dies oder das zu erklären oder es als ‚verrückt‘ und mystisch außerhalb des Bereichs der ernsten Wissenschaft stehend auszulachen.

Wir erinnern uns, daß die Bione entweder „nur Streptokokken“ waren; oder sie waren „Privatphantasie“; daß der To-T-Unterschied im Akkumulator entweder nicht existierte, oder wenn er existierte, war es „nur Konvektion von der Tischplatte zur Decke“. Ähnlich war es, wenn der Anstieg des Fieberthermometers beschrieben wurde: entweder waren die Thermometer fehlerhaft oder der Anstieg der Körpertemperatur wurde „subjektiv“ erzeugt.

Trotz dieses theoretischen Gewahrseins war ich anfangs vorsichtig und zögerte den Schluß zu ziehen, daß die Erstrahlung der Birnen ein orgonotisches Phänomen war. Da war ein Widerstand gegen die Verbindung der Vakuumeffekte mit Reichs „Vacor“-Experimenten. Es war, als hätte ich befürchtet, daß jemand sagen könnte: „Da haben wir sie wieder die verrückten Orgonomen, die immer vorschnell zu dem Schluß kommen, daß es das Orgon ist.“ Irgendwie gab es in meiner Haltung zur Orgonomie ein Element der Mystik: es war, als ob wenn Reich es tun konnte, wenn er es wollte, und daß es dann ‚orgonomisch‘ und real war. Ich habe bereits beschrieben, wie diese Art von Haltung meine Beobachtungen seit Jahren verzögert hat. Selbst als die Glühbirne in meinen Händen aufleuchtete, funktionierte immer noch derselbe Widerstand. In gewisser Weise wollte auch ich glauben, daß es „nur dies oder das“ ist.

Dementsprechend habe ich einige Literatur zu vier eng verwandten Bereichen untersucht: Lampentechnologie, Bio-Elektrizität und Bio-Lumineszenz, Elektrostatik, und die Ionisierung von Gasen. Ich nahm auch Kontakt mit einer Anzahl verschiedener Leute auf, von denen ich dachte, daß sie in der Lage wären, das Aufleuchten zu erklären: G.E.C. (General Electric Co., Nottingham), A.E.I. Lamp and Lightning, Nottingham; das Department of Physics an der Nottingham University und das National Physical Laboratory, London.

In keinem der konsultierten Bücher wurde erwähnt, daß Glühbirnen leuchten, wenn sie in einem dunklen Raum gerieben werden. Nur ein Buch, das Harvey über LIVING LIGHT geschrieben hat, bezieht sich auf die Tatsache, daß „das bloße Reiben einer Neonröhre das Gas zum Leuchten bringt“ (2, S. 105).

Es schien vernünftig anzunehmen, daß das Phänomen nicht allgemein bekannt war. Diese Annahme fand sich durch Autoritäten, die konsultiert wurden, voll bestätigt. Ihre Reaktionen sind schon allein ein fesselndes Thema und werden im folgenden ziemlich ausführlich zitiert:

(a) Der Sprecher der G.E.C. sagte, das mit den beschriebenen Lichteffekte klänge „eigenartig“ und sagte, daß, da wohl etwas mit der Birne defekt sei, ich sie zurückgeben und gegen eine intakte tauschen sollte.

(b) Der Assistent beim A.E.I., mit dem ich sprach, reagierte, als ob er zu einem Thema befragt würde, das seinen Horizont übersteigt und holte den Manager. Der Manager nahm eine ‚stachelige‘, ziemlich aggressive Haltung ein und sagte, daß er natürlich mit einem solchen Effekt vertraut sei und sich bewußt sei, daß 25-Watt-Glühbirnen bläulich-grün leuchten. Als er nach Details gefragt wurde, mußte er zugeben, daß er dieses Phänomen nur einmal beobachtet hatte, und daß damals eine elektrische Spannung von 12 000 Volt von einem elektrischen Generator an die Lampe angelegt worden war. Er war sichtlich irritiert über die Aussage, daß man die Glühbirne mit den Händen reiben und so zum Erleuchten bringen könnte, und merkte an: „Die meisten Menschen behandeln sie natürlich nicht wie Aladdins Lampen und erwarten, daß der Geist aus ihnen herauskommt.“ Er beeilte sich, hinzuzufügen, daß er sicher sei, daß kein Elektrohersteller an einem solchen Phänomen interessiert sei, und daß er auf jeden Fall keinen Zweifel daran habe, daß die meisten von ihnen bereits mit dem Effekt vertraut seien.

(c) Der promovierte Wissenschaftler an der Universität war viel aufgeschlossener und schien ‚interessiert‘. Er war interessiert, weil er, wie er sagte, in letzter Zeit etwas ähnliches bemerkt hatte, als er in der Dunkelheit eine Neonröhre an seinem Ärmel gerieben hatte. Das hatte ihn überrascht, also hatte er es gegenüber den Mitarbeitern der Universität von Durham erwähnt, die sich mit Physik beschäftigten, doch keiner von ihnen war damit vertraut. Er hatte von mehreren Leuten gehört, die Neonröhren gekauft hatten, daß einige der Glühlampen leuchteten und andere nicht. Als er gefragt wurde, wie er diese „überraschenden“ Effekte erklärte, kamen ihm eher Zweifel, er wurde vage und sagte: „Sie bauen ein elektrostatisches Feld auf, nehme ich an.“ Er hatte noch nie von elektrischen Glühbirnen gehört, die auf diese Weise aufleuchteten und wußte eindeutig nicht, was er sagen sollte, als man ihm mitteilte, daß Reibung auf Seide das Aufleuchten vermindert. Er schlug vor, daß die Neonröhren auf einer Party gute „Zauberstäbe“ hermachen würden.

(d) Ein Elektriker beim Nottingham Electricity Board hatte noch nie von dem Phänomen gehört, „außer auf dem Jahrmarkt“. Er sagte ebenfalls ziemlich höhnisch, daß es wie ein guter Partytrick klinge.

(e) Von dritter Hand hörte ich, daß ein Elektriker in Yorkshire von dem Effekt (den die meisten Leute seiner Meinung nach erzielen könnten) seit einigen Jahren wußte und ihn tatsächlich auf Partys benutzte und seine Freunde regelmäßig damit amüsierte.

(f) Ein erfahrener promovierter Physiker, mit Kenntnis von Reichs Arbeit, sagte, das ganze sei, soweit er wisse, unbekannt und unerklärt.

(g) Die National Physical Laboratories haben eine Woche nach einer Anfrage noch nicht geantwortet. [In einer Nachschrift fügte Boadella folgendes an:]

Den folgenden Brief, unterschrieben von L.A. Sayce, dem Superintendenten der Licht-Abteilung des National Physical Laboratory, erhielten wir vor der Drucklegung:

Sehr geehrter Herr,

die Wirkung, die Sie in Ihrem Brief vom 5. Mai erwähnen, scheint sicher auf die durch die Reibung der Hand erzeugte Elektrifizierung zurückzuführen zu sein. Wir stellen fest, daß man es am leichtesten hervorbringen kann bei Vakuumlampen, wie sie früher hergestellt wurden, in denen das Vakuum zweifellos so gut ist wie in neueren Lampen. Dies legt nahe, daß die Hauptursache eine Entladung im Restgas ist, das in der Lampe zurückblieb, – viel weniger intensiv als in einer Neonröhre, weil es viel weniger Gas gibt. Bei diesem sehr niedrigen Druck ist es wahrscheinlich, daß ein Teil der Lumineszenz auch von dem Glas der Birne kommt, das mit Elektronen beschossen wird, die bei der Entladung freigesetzt werden.

Die Erregung einer Entladung innerhalb der Birne kann nicht einfach durch einen konstanten Zustand der statischen Ladung auf der Außenseite entstehen, sondern nur durch sehr plötzliche oder hochfrequente Änderungen in diesem Zustand. Folglich wird es sehr von der Art des Reibens abhängen. Von daher wird die schnellstmögliche Annäherung eines geladenen Hartgummistabes keine Wirkung zeitigen, da sie immer noch nicht schnell genug ist. Wahrscheinlich wird Seide den Effekt erzeugen, den richtigen „Ruck“ geben. Terylen [Polyesterfaserstoff] schafft es mit Sicherheit.

Was die Farbe anbetrifft, so wäre die Entladung in der Restluft (hauptsächlich Stickstoff) bläulich, während die Lumineszenz des Glases das bekannte Grasgrün wäre und die allgemeine Wirkung wäre natürlich blaugrün.

Uns sind keine Literaturverweise zu dieser Frage bekannt, aber wir sind uns sicher, daß die einfache Erklärung, die wir gegeben haben, im Großen und Ganzen die richtige ist. Wir wiederholen, daß der Grad des Vakuums den Effekt bestimmen wird, so daß einige gut gemachte moderne Vakuumlampen ihn nur schwer oder gar nicht zeigen könnten.

Kommentar von David Boadella: Die Erklärung wurde eindeutig speziell für die Anfrage entworfen. „Es scheint“, „wir fühlen“, „wahrscheinlich“, „im Großen und Ganzen“, weist auf Schwierigkeiten hin, eine Theorie zu finden, die den Tatsachen entspricht. Man beachte die folgenden Widersprüche: 1. Herr Sayce sagt, daß das Glühen (Entladung) „viel weniger intensiv ist … weil es viel weniger Gas gibt“. Vakuumlampen waren jedoch heller als gasgefüllte Birnen. 2. Herr Sayce deutet an, daß das „bekannte grasgrüne“ Leuchten des Glases intensiver wäre, wenn man den Druck reduziert. Aber sein letzter Satz sagt das Gegenteil: „einige gut gemachte moderne Vakuumlampen könnten es nur schwer oder gar nicht zeigen”.

Wie sanftes Streicheln „sehr plötzliche“ Veränderungen hervorrufen kann, wird nicht gesagt.

 

Literatur

2. Harvey, E. Newton: LIVING LIGHT. Princeton University Press, 1940

 

* Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Some Orgonotic Lumination Effects“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 3, S. 139-150.

Einige orgonotische Erstrahlungseffekte. Eine vorläufige Mitteilung (1958) (Teil 2)

16. Juli 2018

von David Boadella

Beobachtungen an Haushaltsglühbirnen

Ermutigt durch die unerwartete Reaktion der Neonbirne, amüsierte ich mich auf dieselbe Weise mit einer gewöhnlichen elektrischen Haushaltsglühbirne: indem ich sie am Metallende hielt, rieb ich sie auf unterschiedliche Weise. Zu meinem Erstaunen leuchtete auch sie nach einer anfänglichen „Aufwärmphase“ von weniger als einer Minute. Folgende Beobachtungen wurden im Laufe des Abends und anschließend in Abständen während der Woche gemacht:

1. Das Aufleuchten hatte drei Hauptformen

a) Ein allgemeines Glühen der ganzen Birne mit einer bläulich-grauen Farbe, so daß das ganze Volumen der Birne in vollständiger Dunkelheit sichtbar war. Dieses Glühen dauerte nur kurz an, wenn aber das Reiben der Glühbirne ohne Unterbrechung aufrechterhalten wurde, konnte das Leuchten einigermaßen gleichmäßig gehalten werden.

(b) Bläulich-grüne bis weiße blitzartige Striche von einer Seite der Birne zur anderen. Diese schienen eine stärkere Erregung der Glühbirne anzuzeigen. (Wie dies erreicht wurde, wird unten diskutiert.)

(c) Brillante bläulich-grüne bis weiße sich langsam bewegende Leuchtpunkte oder „Flecken“ aus Punkten an vielen Stellen der Birne und dem allgemeinen Leuchten überlagert. Um diese zu erzeugen, schien ein festeres und nachhaltigeres Reiben der Birne notwendig zu sein. Eine spiralförmige verdrehende Bewegung der Hand um die Glühbirne herum (während die Kappe der Glühbirne fest in der anderen Hand gehalten wurde) genügte gewöhnlich, um diese Leuchtpunkte zu erzeugen.

2. Die Hände und die Birne mußten vollständig trocken sein. Das Trocknen der Glühbirne zur Entfernung von Kondenswasser war einfach, aber das Trocknen der Hände schien nicht so einfach zu sein, da die ganze Frage der individuellen Abweichung betroffen war. Die ersten Beobachtungen der Glühbirne wurden am Ende einer Woche gemacht, während der ich an den meisten Abenden mindestens eine halbe Stunde im Orgonakkumulator verbracht hatte, so daß es sehr wahrscheinlich war, daß dies dazu beitrug, meine Hände ‚auszutrocknen‘. Einige Menschen waren nicht in der Lage, die Glühbirne zum Leuchten zu bringen, und es wurde berichtet, daß das Pudern der Hände das Aufleuchten erleichtert. Die Feuchtigkeit aufgrund von normalem Schwitzen wird vermutlich absorbiert. Andere mögliche Ursachen für Schwierigkeiten beim Aufleuchten der Birne werden später in diesem Artikel diskutiert.

3. Das konstante Handhaben der Birne über einen Zeitraum von beispielsweise einer Stunde oder mehr erhöhte ihre Empfindlichkeit. Nachdem die Glühbirne sich ‚daran gewöhnt‘ hatte, über eine gewisse Zeit häufig zu leuchten, wurde sie durch sehr leichten Kontakt mit den Händen in einer Weise zum Leuchten gebracht, die vorher nicht möglich gewesen war. Irgendwann begann sie sich der Empfindlichkeit der Neonbirne zu nähern, so daß sie überraschend leuchtete, wenn ich es nicht erwartete oder sie versehentlich berührte. Wenn sie diesen Empfindlichkeitsgrad erreicht hatte, leuchtete sie, wie die Neonbirne, auch auf beim Reiben an verschiedenen Teile des Körpers, z.B. Armbeuge, Leistenbeuge, Achselhöhle, Armrücken, etc.; nochmal vorausgesetzt, daß der Körper gründlich trocken war. Wie bei dem Neonkolben schienen die stärksten Blitze aufzutreten, wenn die Birne von der Haut genommen wurde.

4. Wenn meine Hand für wenige Augenblicke nahe der Wand des Akkumulators gehalten wurde und dann die Glühbirne auf die normale Weise gestreichelt wurde, schien es, daß das Aufleuchten intensiver war. Es war sehr schwierig dabei subjektive Faktoren auszuschließen oder die Möglichkeit, daß ich sie diesmal extra stark rieb. Die einzige mögliche Kontrolle war, sie sofort mit der Hand zu reiben, die nicht in der Nähe der Akkumulatorwand gehalten worden war. Außerdem versuchte ich den Druck, den ich anwandte, für beide Hände konstant zu halten. Eine ähnliche Zunahme der Intensität beobachtete ich, nachdem ich meine Hand durch meine Haare geführt hatte, und wenn ich die Birne normal streichelte, nachdem sie für ein paar Minuten auf der Haut meines Bauches gelegen hatte.

5. Als die Glühbirne auf Metall, Holz, Glas und anderen rigiden Materialien gerieben wurde, wurde kein Aufleuchten bemerkt. Reibung auf Stoff, z.B. Wolle, Baumwolle, Seide, ergab überhaupt kein Aufleuchten, wenn das Material nicht in der Hand, die die Glühbirne umgab, gehalten wurde. Dann war es schwierig, die Wirkung der Hand auszuschließen, denn je dünner die Schicht des Materials zwischen der Birne und der Hand ist, desto mehr ähneln sich die Wirkungen denen, die mit der bloßen Hand erzielt werden, welche die bis jetzt stärksten sind. Ein Seidenschal in der Hand schien die Wirkung der Hand zu behindern. Wenn zum Beispiel die Glühbirne durch die Hand angeregt wurde, leicht in die Handfläche gedrückt. und dann entfernt wurde, ohne zu reiben, gab es ein leichtes Aufleuchten. Wenn diese Aktion einige Male wiederholt wird, wiederholt sich auch das Glühen, wird dabei allmählich schwächer und ist schwer erneut zu reproduzieren, bis die Birne erneut gestreichelt wird. Wenn nun nach einer solchen Behandlung der Birne in der Handfläche, die Handfläche mit einer einzigen Seidenschicht bedeckt wird und die Birne dann wieder hineingedrückt wird, so ist das Glimmen merklich schwächer und tatsächlich kaum wahrnehmbar.

6. Die Glühbirne war einige Abende lang auf diese Weise angeregt worden und leuchtete, in einen Stromkreis eingesteckt, noch immer normal. Der Wolframfaden wurde dann gebrochen, so daß die Glühbirne nutzlos wurde, wenn sie eingesteckt wurde und überhaupt kein Licht mehr gab; aber die oben beschriebenen Aufleuchteffekte blieben davon völlig unberührt. Die Hände konnten die Glühbirne zum Aufleuchten bringen, aber eine elektrische Spannung von 240 Volt, die an die Klemmen angelegt wurde, konnte das nicht.

7. Wenn ein aufgeladener Hartgummistab, der in der Lage gewesen war, die Neonbirne in einiger Entfernung zum Aufleuchten zu bringen, in die Nähe der Haushaltsbirne gebracht wurde, gab es überhaupt kein Aufleuchten, noch gab es ein Aufleuchten, wenn die Birne mit dem geladenen Stab gerieben wurde.

* Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Some Orgonotic Lumination Effects“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 3, S. 139-150.

nachrichtenbrief111

23. April 2018

nachrichtenbrief108

9. April 2018