Posts Tagged ‘Elektrizität’

Zur Entstehungsgeschichte der Orgonomie

2. November 2020

Diese Arbeit von Klaus Heimann spiegelt die Orgonomie in Deutschland bzw. das orgonomische Wissen in Deutschland Mitte/Ende der 1970er Jahre wider. In diese Zeit reichen die Bemühungen zurück, die Orgonomie in Deutschland, nach der restlosen Zerstörung erster Anfänge auf deutschem Boden, die 1933 erfolgte, erneut zu etablieren. Das damalige orgonomische Wissen ist der Ausgangspunkt des NACHRICHTENBRIEFes und sollte deshalb von jedem, der neu zu unseren Netzseiten stößt, als Einführung gelesen werden, damit wir alle eine gemeinsame Grundlage haben. Klaus Heimanns Arbeit hat den Zauber des Anfangs an sich und möge in einer neuen Generation das Feuer von neuem entzünden:

ZUR ENTSTEHUNGSGESCHICHTE DER ORGONOMIE von Klaus Heimann

EIN QUERSCHNITT DURCH DAS SCHAFFEN JEROME EDENs: Die Lebensenergie am Rande der Wissenschaft

3. Oktober 2020

 

EIN QUERSCHNITT DURCH DAS SCHAFFEN JEROME EDENs: Die Lebensenergie am Rande der Wissenschaft

Orgonotische Erregungseffekte II (1958) (Teil 8)

13. Dezember 2018

von David Boadella

6. Die Pulsation der Elektroskop-Blätter (Fortsetzung)

Bisher wurde die Erregung der Blätter durch einen Isolator beschrieben. Sehr geringe Erregung durch meine Hand wurde beobachtet, da die Blätter mit nur geringer Bewegung reagierten, wenn meine Hand sich der Scheibe näherte. Wenn man jedoch einen geladenen Isolator die Elektroskopscheibe bedecken ließe (z.B. man sie mit einem weichen Gummihandschuh drapierte), war die Konvergenz der Blätter viel stärker ausgeprägt. Das heißt die Hand, die ein ungeladenes Elektroskop an der Scheibe nicht beeinflussen kann, kann eine beträchtliche Bewegung der geladenen Blätter erzeugen, wenn sie etwa 6 Zoll über der Scheibe bewegt wird, nur vorausgesetzt, daß die Metallscheibe durch den Isolator bedeckt ist. Der Isolator scheint den Feldeffekt der Hand zu „verstärken“. Reich war früh mit der Tatsache konfrontiert, daß das Elektroskop nicht direkt durch Aufladung auf eine Orgon-Konzentration reagierte. Es wurde nur geladen, wenn das Orgon absorbiert worden war und anschließend von einem guten Isolator emittiert wurde. Eine ähnliche Indirektheit scheint den Aufladungseffekt der Hände zu bestimmen. Die Hände können kein Elektroskop an der Scheibe laden, aber sie werden Gummi oder Glas oder andere Isolatoren erregen, die wiederum eine starke Wirkung auf das Elektroskop haben.

Diese indirekte Einwirkung der Hände auf die Goldblätter ist am deutlichsten zu sehen, wenn die Blätter durch Streichen des Glases der Flasche geladen sind. Wenn ich meine Hände von der Flasche nahm, begannen die Blätter zuerst langsam zu konvergieren und sich dann langsam wieder zu spreizen. Mit anderen Worten, die bereits erwähnte Pulsation, die durch Isolatoren hervorgerufen wird, tritt auch als Reaktion auf die Hände auf. Das gleiche Phänomen der Langsamkeit, wenn die Aufladung über einen Isolator erfolgte, im Vergleich mit der direkten metallischen Leitung, wurde von Reich beobachtet (siehe 5, S.119).

Wenn sich meine Hände wieder dem Flaschenhals näherten, gab es eine sehr starke Bewegung der Blätter. Sowohl die Konvergenz bei Annäherung als auch das Abspreizen bei Annäherung wurden beobachtet, und beide traten immer noch auf, selbst wenn alle Vorsichtsmaßnahmen getroffen worden waren, um sicherzustellen, daß die Art des Streichens identisch war. Es war möglich, zwei Elektroskope auf die gleiche Weise zu laden und eine Abspreizung in der einen und eine Konvergenz in der anderen durch die gleiche Hand zu erhalten, die auf die gleiche Weise angenähert wurde.

Zwei weitere ungewöhnliche Beobachtungen wurden mit dem auf diese Weise aufgeladenen Elektroskop gemacht. Wenn ich meinen Finger auf die Scheibe legte, bevor die bereits beschriebene langsame erneute Abspreizung stattgefunden hatte und die langsame Konvergenz beim Entfernen der Hand vom Glas noch immer vor sich ging, gab es bei den Blättern einen sehr plötzlichen ‚Stoß‘ nach außen. Mit anderen Worten, die normalerweise langsame Reaktion auf die Erregung durch die Hand durch das Glas hindurch wurde stark beschleunigt. Es war tatsächlich möglich, die Blätter um einen Winkel von ungefähr 30º von der vertikalen Position abzulenken, indem ich meinen Finger auf die Scheibe legte. Die Hand, die normalerweise das Elektroskop an der Scheibe entlädt, ist hier in der Lage, das Elektroskop an der Scheibe aufzuladen. Nicht nur kann gezeigt werden, daß eine ‚Erdung‘ manchmal keinen Effekt auf das Entladen des Elektroskops hat, vielmehr wird die bloße Prozedur des ‚Erdens‘ unter diesen Bedingungen sogar genau das Gegenteil dessen ergeben, was normalerweise daraus resultiert. So ist es nicht überraschend, wenn man findet, daß Metall, wenn es auf die Scheibe gebracht wird, die gleiche Reaktion hervorbringt.

Auch wenn das Elektroskop durch Streichen des Glases teilweise geladen und dann vom Tisch hochgehoben wurde, wurde eine deutliche Zunahme der Spreizung der Blätter bemerkt. Dies war nicht in Form eines ‚Stoßes‘, sondern einer ziemlich schnellen stetigen Erweiterung der Blätter. Das verwirrte mich eine ganze Weile, da die Ablenkung nur mit einer Aufwärtsbewegung erfolgte, aber wenn ich das Elektroskop im freien Raum hielt und es nach oben oder unten bewegte, trat keine Veränderung ein. Dann wurde klar, daß diese scheinbar bizarre Ablenkung nur erzeugt wurde, als der Kontakt zwischen dem Glas und der Tischplatte unterbrochen wurde. Dies konnte keine bloße Frage der Trennung von Oberflächen sein, da die Reaktion nur auftrat, wenn der Elektroskopkolben zuerst gestreichelt worden war. Es war die Dissoziation der beiden Energiefelder, das die Blätter anregte: das Streichen der Glasschale regt auch die Tischplatte an, ob diese nun aus glattem Holz besteht oder ob sie mit einer Metallplatte oder Plastiktischdecke bedeckt ist – alles Varianten, die versucht wurden und bei denen die Reaktion erfolgte.

Wenn statt des Flaschenhalses der Flaschenbauch gestreichelt wurde, reagierten die Blätter mit starker Erregung. Es war möglich, die Wirkung einer starken Brise innerhalb der luftdichten Flasche zu simulieren und ein vollständiges Zucken der Blätter mit einer Ablenkung um 90 Grad oder mehr zu erhalten. Wenn dieses Streicheln langsam auf einer Seite des Flaschenbauches durchgeführt wurde, wobei die Flasche in der anderen Hand horizontal gehalten wurde, konnte das nahe Blatt dazu gebracht werden, sich zu meiner Hand hin auszudehnen. Wieder wurde der Vergleich mit einer biologischen Bewegung – einer Erektion – von mehreren Beobachtern des Phänomens empfunden. Die ‚Erektion‘ des Blattgoldes folgte einem Muster, das nunmehr allmählich typisch zu sein scheint: es geschah manchmal als Reaktion auf die Annäherung meiner Hand (mit Zusammenfall beim Entfernen) und manchmal auf die Entfernung meiner Hand (mit dem Zusammenfall beim Annähern).

Der stärkste Feldeffekt wurde gefunden, als das Elektroskop von meinen Händen geladen wurde und ein Gummihandschuh, der auch von meinen Händen geladen worden war, neben dem Glas hin und her bewegt wurde. Die Erdung der Scheibe beseitigte die Reaktion jetzt genausowenig wie sie es zuvor getan hatte. Die Blätter reagierten auf die Bewegung des Handschuhs mit einer eigenen Bewegung, die mit zunehmender Entfernung des Handschuhs geringer wurde. Eine winzige aber unmißverständliche Zunahme der Ablenkung der Blätter konnte in einer Entfernung von zweieinhalb Fuß beobachtet werden. Mit dem Ethilon-Streifen konnte dieser Abstand um etwa einen weiteren Fuß überschritten werden.

Das Elektroskop zuckt als Reaktion auf „etwas“ im angeregten Gummihandschuh über einen Abstand von 2 oder 3 Fuß. Es ist wenig gewonnen, wenn dieses „Etwas“ als ein elektrostatisches Feld bezeichnet wird. Wir haben gesehen, daß dies ohne Reibung hervorgerufen werden kann. Es kann zu Rötung und Prickeln der Haut führen. Es kann Erstrahlung in Neonlampen erzeugen, wie auch in Glühbirnen. Es regt Holzstücke an, die mit hellstrahlenden Lichtpunkten leuchten. Es kann aus dem Kontakt mit dem Haar oder mit der Haut erhalten werden. „Das Elektroskop ist nicht mit Strom geladen, sondern mit Orgon. Das Orgon dringt in alles ein; Leiter und Nichtleiter, nur mit unterschiedlichen Geschwindigkeiten. Der Isolator leitet keine Elektrizität, aber er leitet Orgon. Aus diesem Grund kannst du ein Elektroskop mit einem orgonotisch geladenen Isolator aufladen, genauso wie du das Elektroskop durch einen Isolator entladen kannst“ (5, S. 120).

Es ist leicht zu verstehen, warum das Elektroskop für Arbeiter auf dem Gebiet der Elektrizität von nur geringem Nutzen ist, hingegen ein grundlegendes Instrument der Orgonomie darstellt. Das war es, was Reich dazu brachte, das Instrument umzubenennen und es passender als „Orgonometer“ zu bezeichnen. Nur die Annahme, daß es sich um Orgon und nicht um Elektrizität handelt, die die Isolatoren und die Goldblätter anregt, macht es möglich, die funktionellen Beziehungen zwischen Licht hier und Ladung dort zu verstehen; zwischen der offensichtlichen vegetativen Reaktion auf der einen und der subtilen emotionalen Reaktion auf der anderen Seite. Wir können diese Beziehungen bei der Anregung, die durch das Orgonenergie-Feldmeßgerät induziert wird, weiter untersuchen.

(Fortsetzung folgt) [eine etwaige Fortsetzung liegt mir nicht vor, PN]

 

Literatur

5. Reich, Wilhelm: „Orgonotic Pulsation: the differentiation of orgone energy from electro-magnetism. Presented in talks with an electro-physicist“ (insbesondere Part II: The orgonotic excitation of insulators. Questionable points in the concept of static electricity), International Journal of Sex-Economy and Orgone Research, Vol. 4, 1945

9. Ritter, Paul: „Bio-functional planning, Part IV Enclosure“, Orgonomic Functionalism, Vol. IV. 1957 [Im gesamten Text von Boadella gibt es keinen Verweis auf diesen Artikel. PN]

 

Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Orgonotic Excitation Effects II“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 4, S. 211-232.

Orgonotische Erregungseffekte II (1958) (Teil 6)

9. Dezember 2018

von David Boadella

5. Laden und Entladen des Elektroskops

Diese Aktivität ist dreierlei Art: wir können die Art und Weise unterscheiden, wie das Elektroskop sich lädt, die Art und Weise, wie es sich entlädt, und die Art und Weise, wie sich die geladenen Blätter bewegen, wenn sie erregt sind. Die folgende Beschreibung setzt kein Vorwissen über Elektroskop-Reaktionen voraus. Es schien am besten, alle beobachteten Phänomene genau und treu zu beschreiben, das Bekannte und Vertraute, als auch das Unbekannte und das Ignorierte. Auf diese Weise kann das gesamte Muster der Elektroskop-Reaktionen deutlicher hervortreten.

Ein Routineverfahren zum Laden eines Elektroskops besteht darin, ein gut isolierendes Material zu nehmen, es einige Male kräftig auf einem geeigneten Stoff zu reiben und es dann nahe an die Metallscheibe des Elektroskops heranzuführen. Glas auf Seide, Leder oder Filz gerieben ist eine häufige Wahl, desgleichen Hartgummi auf Wolle oder Flanell gerieben. Wenn sich das geriebene Material der Messingscheibe nähert, spreizen sich die Blätter des Elektroskops ab. Wird das geladene Material dann entfernt, ohne die Scheibe berührt zu haben, konvergieren die Blätter wieder: die Anregung hört auf. Wenn jedoch der Isolator in Kontakt mit der Scheibe kommen kann, bleibt die Ladung erhalten, wenn der Isolator entfernt wird. Ob dies unmittelbar nach dem Kontakt geschieht, oder ob wiederholte Kontakte oder ein längerer Kontakt erforderlich sind, scheint von der Art des verwendeten Materials und von der Feuchtigkeit zu dieser Zeit abhängig zu sein.

Eine zweite Methode ist als ‚Aufladen durch Induktion‘ bekannt. Der Isolator wird ohne Berührung in die Nähe der Scheibe gebracht und dort gehalten, während die Scheibe durch Berühren mit dem Finger ‚geerdet‘ wird. Der Finger wird entfernt und dann der Isolator: die Blätter des Elektroskops konvergieren, wenn der Finger die Scheibe berührt, und spreizen sich ab, wenn der Finger und der Isolator entfernt werden.

Ein drittes Verfahren zum Aufladen des Elektroskops durch Streichen des Flaschenhalses mit der Hand wurde bereits beschrieben und wird später detaillierter diskutiert.

Eine vierte Methode wurde erstmals 1939 von Reich beschrieben (siehe 10, 11). Seine drei Experimente sind von größter Wichtigkeit, da sie direkt zur Konstruktion des ersten Orgonakkumulators führten, um die Energie, deren Wirkungen er beobachtete, einzuschließen.

Kurz gesagt, fand Reich zufällig heraus, daß ein Paar Gummihandschuhe, die in der Nähe einiger seiner Bionpräparate liegengelassen worden waren, die Blätter eines nahe gelegenen Elektroskops ablenkten. Er überprüfte, ob die Handschuhe nicht auf eine andere Weise aufgeladen worden waren. Anschließend konnte er das gleiche Aufladen des Elektroskops erreichen, indem er ungeladene Handschuhe in Kontakt mit dem Abdomen oder den Genitalien einer vegetativ beweglichen Person ließ oder sie für eine bestimmte Zeit starker Sonnenstrahlung aussetzte. Einige Jahre später (1944) gelang es Reich, das Elektroskop mit Gummi aufzuladen, das einige Tage lang in einem Orgonakkumulator gelegen hatte (siehe 5). Denjenigen Kritikern Reichs, die seine psychiatrische und soziologische Arbeit loben, aber seine Physik vollkommen anders bewerten, stünde es gut zu Gesicht sich daran zu erinnern, daß sich das Experiment mit dem Gummi auf den Genitalien oder dem Bauch sich, wie so viele seiner anderen Experimente, direkt aus seiner psychiatrischen und sexualökonomischen Arbeit entwickelt hat. Diese drei Experimente am Elektroskop waren die ersten orgon-physikalischen Experimente, die jemals durchgeführt wurden.

Ich habe versucht, diese Experimente zu wiederholen und das Elektroskop so aufzuladen, wie Reich es beschrieben hat. Am schwierigsten war es mit dem ersten Paar Handschuhen, welches ich benutzte, das Kontrollexperiment durchzuführen, den ungeladenen Handschuh in der Nähe des Elektroskops zu halten und keine Auslenkung zu erhalten. Entgegen der Erwartung hatte ein Handschuh, den ich mit keinem der beschriebenen Mittel aufladen wollte, trotzdem eine Ablenkung der Blätter bewirkt. Es schien, daß der bloße Umgang mit dem Handschuh, ohne die Absicht, ihn zu erregen, irgendwie beim Handschuh eine starke Ladung hinterließ. Solange ich den Handschuh weiter handhabte, als ich ihn der Elektroskopscheibe näherte, blieb die Ladung bestehen. Erst durch das Eintauchen in Wasser wurde sie vollständig entfernt, und das Halten der Handschuhe mit einer Pinzette erwies sich als die einzige erfolgreiche Methode, Ladungen von der Hand zu eliminieren. Wenn der Gummihandschuh eine Viertelstunde lang auf den Haaren blieb und dann sehr vorsichtig entfernt wurde, um wirklich jedwede Reibung vernachlässigbar zu machen, zeigte sich am Elektroskop immer noch eine starke Aufladung. Dies steht in Einklang mit der Leichtigkeit, mit der ein Plexiglasstab aufgeladen werden kann, indem man einmal auf das Kopfhaar streicht (siehe 5 und den Brief von Dr. Raknes hier). Das Experiment des Aufladens des Handschuhs durch Kontakt mit der Haut des Bauches wurde ebenfalls zufriedenstellend wiederholt. Es war nicht möglich, das Experiment mit der Erstrahlung in der Sonne oder im Akkumulator zu wiederholen, wegen des anhaltenden regnerischen und feuchten Wetters in Nottingham in diesem Sommer.

Ich kaufte ein zweites Paar Handschuhe, die am Elektroskop überhaupt keine Reaktion zeigten, egal welche Behandlung sie erhielten. Das Material wurde als ‚satiniertes‘ Gummi beschrieben, aber warum dieser Handschuh überhaupt nicht reagieren wollte, ist immer noch ein Rätsel. Möglicherweise hat es etwas mit der Tatsache zu tun, daß nicht alle Gummiprodukte Isolatoren sind. Die Frage, welche chemischen Komponenten, Herstellungsverfahren und Energiezustände mit so großen Kontrasten bei nach außen hin so wenig differenzierten Materialien verbunden sind, scheint eine intensive Forschung zu erfordern. Zur Zeit ist darüber nur sehr wenig bekannt.

Ich habe versucht, die Elektroskopscheibe zu erden, um zu sehen, ob dies das Aufladen erschweren oder unmöglich machen würde. Bei Erdung gab es keine Reaktion auf einen geladenen Isolator, der in die Nähe der Scheibe gebracht wurde oder auf sie gelegt wurde. Aber die Erdung verhinderte nicht das Aufladen, das durch das Streichen des Glases mit der Hand erzeugt wurde. Es war auch möglich, die Gummiisolierung des zur Erdung verwendeten Drahtes zu streichen und auf diese Weise ein Aufspreizen der Blätter hervorzurufen. Diese letzte Tatsache zeigt am eindeutigsten die Antithese zwischen Orgon und Elektrizität. Isolatoren aus Gummi werden vom Elektriker verwendet, um zu verhindern, daß Elektrizität vom Draht nach außen fließt. Die gleiche Gummiisolierung erleichtert jedoch das Fließen von Orgon von außen nach innen zum Draht. Der Einwand, daß die ‚Spannung‘ der Hände hoch genug sei, um durch die Gummidämmung hindurchzugehen, wirft nur das ungelöste Problem auf, wie diese ‚Spannung‘ überhaupt in die Hände gelangt. Er wird auch durch Reichs Entdeckung widerlegt, daß der Orgonfluß in Isolatoren effektiver ist, wenn die Isolierung sehr gut ist: „Je besser der Isolator, desto ausgeprägter ist die Reaktion – Styropor ist als hervorragender Isolator bekannt. Es gab immer diese Reaktion” (5, S. 119).

Das Routineverfahren zum Entladen des Elektroskops besteht darin, die Scheibe mit der Hand oder mit Metall zu berühren, d.h. die Blätter zu „erden“. Wir dürfen jedoch nicht davon ausgehen, daß das, was geschieht, notwendigerweise etwas mit der Erdung zu tun hat. Eine Reihe von Beobachtungen widerspricht dieser Annahme.

Bei ein oder zwei Gelegenheiten hatte ich große Schwierigkeiten das Elektroskop zu entladen, nachdem es mit den Händen auf dem Glas der Flasche geladen worden war. Metall oder meine Hand auf der Scheibe hatten keine Wirkung. Nur das Eintauchen von drei Vierteln des Elektroskop-Glases in Wasser brachte bei solchen Gelegenheiten die Blätter dazu sich zu entladen.

 

Literatur

5. Reich, Wilhelm: „Orgonotic Pulsation: the differentiation of orgone energy from electro-magnetism. Presented in talks with an electro-physicist“ (insbesondere Part II: The orgonotic excitation of insulators. Questionable points in the concept of static electricity), International Journal of Sex-Economy and Orgone Research, Vol. 4, 1945

10. Reich, Wilhelm: DREI VERSUCHE AM STATISCHEN ELEKTROSKOP, Rotterdam, 1939

11. Reich, Wilhelm: „Three experiments with rubber at the electroscope (1939)“, Orgone Energy Bulletin, Vol. 3, No. 3, 1951

 

Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Orgonotic Excitation Effects II“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 4, S. 211-232.

Orgonotische Erregungseffekte II (1958) (Teil 5)

6. Dezember 2018

von David Boadella

4. Anziehung und Dissoziation bei Isolatoren

Es war so verstörend an den Unterschieden zwischen den orgon-physikalischen und den akademischen Erklärungen der Elektroskop-Reaktionen, daß sie durch sorgfältige Beobachtungen so leicht aufzulösen sein sollten, doch, als ich zu sorgfältigen Beobachtungen kam, die Schwierigkeiten nicht im geringsten abnahmen, sondern vielmehr zunahmen. Die elektrische Erklärung sagt einfach, und mit dem Dogmatismus eines physikalischen Gesetzes, daß „gleichsinnige Ladungen sich abstoßen, ungleichsinnige Ladungen sich anziehen“. Wenn man ein Elektroskop positiv auflädt und einen negativ geladenen Stab heranführt, sollten von daher die Blätter konvergieren. Wenn man einen zweiten positiv geladenen Stab nimmt, sollten die Blätter um so mehr divergieren.

Üblicherweise werden Gummi und Glas als die Materialien genommen, die beim Reiben an geeigneten Materialien eine negative bzw. positive Ladung annehmen. Es sollte eine ganz einfache Sache sein, das Elektroskop mit Gummi aufzuladen und dann etwas geladenes Glas zu nehmen und zu sehen, was passiert. Ich habe das bei vielen Gelegenheiten gemacht. Manchmal konvergierten die Blätter und die elektrische Theorie der positiven und negativen Elektrizität schien vollkommen erwiesen. Aber zu anderen Zeiten divergierten die Blätter um so mehr, genau wie Reich es beschrieben hatte. So scheinen sowohl der Elektrophysiker als auch der Orgonom „in gewisser Weise“ recht zu haben. Ich versuchte herauszufinden, ob ich unfair war oder ob ich die Ergebnisse irgendwie präjudizierte. Ich überprüfte sorgfältig, ob das Elektroskop tatsächlich seine positive Ladung behalten hatte, bevor ich die negative nahm und umgekehrt.

Ich legte das Elektroskop zur Seite mit dem inneren Gefühl, daß es irgendwie „fehlerhaft“ sein müsse und „verrücktspiele“, und begann mit verschiedenen Isoliermaterialien zu experimentieren. Ich wählte hauptsächlich die Materialien aus, die ich für gut geeignet befunden hatte: Glas, Gummi, Polyäthylenfolie, Hartgummi, Plexiglas und Äthylen. Ich lud jedes dieser Materialien auf, indem ich sie durch meine Hände zog oder über meine Haare führte, und bestätigte, daß sie tatsächlich geladen waren, indem ich sie über die Elektroskopscheibe hielt, um zu sehen, ob sich die Blätter bewegten, und dann feststellte, ob sie sich gegenseitig abstießen oder anzogen.

Der Ethilon-Streifen wurde, wenn er frei aufgehängt war und von Luftströmungen nicht gestört wurde, stark von geladenem Polyäthylen, Gummi, Hartgummi und Glas angezogen, von Plexiglas jedoch abgestoßen. Schlußfolgerung, nach der elektrischen Theorie: Ethilon und Plexiglas sind gleichsinnig geladen; antithetisch zu ihnen, aber in Beziehung zueinander gleichsinnig geladen, sind Polyäthylenfolie, Gummi, Hartgummi und Glas. Doch wir wissen, daß Gummi und Glas eine entgegengesetzte Ladung haben sollten und von daher Ethilon entweder durch Gummi oder Glas abgestoßen werden sollte.

Wenn ein Stück geladenes Gummi suspendiert war, wurde es von Plexiglas, Ethilon und Glas angezogen; und abgestoßen von Ebonit, Polythen und einem anderen Stück Gummi. Fazit nach der elektrischen Theorie: Glas hat die gleiche Ladung wie Ethilon und Plexiglas. Aber wir haben bereits gefunden, daß Glas Ethilon anzieht, und daher von ungleicher Ladung sein sollte.

Wenn eine dünne Polyäthylenfolie frei aufgehängt war, wurde sie von Gummi und Hartgummi abgestoßen, aber von Glas, Äthylen und Plexiglas angezogen. Die Sache scheint jetzt anzufangen einfach zu werden: Glas muß von gleicher Ladung sein wie Ethilon und Plexiglas, und die Tatsache, daß Glas Ethilon anzieht, muß ein ‚Fehler‘ sein. Im Laufe der immer neuen Wiederholungen dieser Beobachtungen stellte ich fest, daß ich das geladene Plexiglas dazu bringen konnte, das geladene Ethilon anzuziehen, um es dann abzustoßen und danach wieder anzuziehen. Es war genau so, als ob das Material einen eigenen Kopf hatte und bewußt unvorhersehbar war, um mich durcheinander zu bringen. So verhalten sich Äthylen und Styropor manchmal so, als wären sie gleich geladen und manchmal wie von ungleicher Ladung. In einem Moment sind sie positiv und im nächsten negativ.

Was ich beobachtete, war genau parallel zum Verhalten von Glas und Gummi am Elektroskop; manchmal eine Wirkung in die eine Richtung und manchmal in die gegensätzliche Richtung. Je mehr ich versuchte, das Material ‚festzunageln‘ und es sich in der einen oder anderen Richtung eindeutig verhalten zu lassen, desto mehr mußte ich erkennen, daß dieser Prozeß nicht starr ist und nicht auf die Frage reduziert werden kann, ob bestimmte Materialien regelmäßig mit zu wenigen oder zu vielen Elektronen hinterlassen werden, wenn sie gerieben werden. Tatsächlich ist die Theorie der positiven und negativen Elektrizität, so sie auf die Anziehung und Abstoßung von Isolatoren angewandt wird, nur haltbar, wenn man die Gelegenheiten übersieht und ignoriert, wo Gummi und Glas gegenseitig ihre Erregung des Elektroskops verstärken und die Gelegenheiten, wenn anscheinend identisch geladene Materialien sich gegenseitig anziehen.

Anschließend konnte ich ein kleineres Stück Ethilon aufnehmen, indem ich den großen Streifen etwa einen Zoll darüber hielt. Das kleinere Stück sprang dann aufwärts und klebte genau so, wie man es erwarten würde, wenn die beiden Stücke ungleiche Ladungen hätten. Aber beide Stücke stammten von einem Originalstreifen, beide waren auf die gleiche Weise gerieben worden, und beide hatten tatsächlich durch Einwirkung auf das Elektroskop zuerst gezeigt, daß sie geladen waren.

Ähnliche Erwägungen führten Reich zu der Schlußfolgerung, daß die Phänomene besser erklärt werden könnten, wenn man annimmt, daß die Isolatoren mit ein und derselben Energie aufgeladen sind, aber daß sie zwei gegensätzliche Funktionen aufweist: Anziehung und Dissoziation (oder Abstoßung). „Die Orgonenergie besteht also nicht aus zwei gegensätzlichen Fluida, sondern aus zwei antithetischen Funktionen, Anziehung und Abstoßung; und jede dieser Funktionen hat eine spezifische Beziehung zur Natur der Substanz“ (5, S.136). Diese Schlußfolgerung ist nicht so revolutionär, wie sie sich anhört. Wenn wir nach dem Ursprung des Begriffs positive und negative Elektrizität, wie er für Isolatoren verwendet wird, suchen, finden wir:

Die Elektrifizierung von mit Seide geriebenem Glas wurde früher vitreous genannt (von Vitrum das lateinische Wort für Glas); diejenige, die von Siegellack oder Harz, das mit Flanell gerieben wurde, abgeleitet wurde, wurde resinous genannt. Diese Namen sind jedoch längst von anderen verdrängt worden, da Glaselektrizität aus Substanzen, die Harzelektrizität erzeugten, gewonnen werden konnte und umgekehrt, indem lediglich das Material des Gummis verändert wurde. (12, S. 60)

Man weiß, daß, wenn rauhes Glas auf glattem Glas gerieben wird, die beiden Glasstücke Anziehung zeigen und daher von ungleicher Ladung sein sollen. Der Zustand der Substanz, die Art und Weise, in der sie angeregt wird, und die Intensität ihrer anfänglichen Ladung sind alles Faktoren, die bestimmen, ob es die anziehende oder die dissoziative Funktion ist, die ausgedrückt wird.

Nach dieser Beschreibung der Erregung eines Isolators durch einen anderen ist es leichter, die Aktivität der Elektroskopblätter zu verstehen.

 

Literatur

5. Reich, Wilhelm: „Orgonotic Pulsation: the differentiation of orgone energy from electro-magnetism. Presented in talks with an electro-physicist“ (insbesondere Part II: The orgonotic excitation of insulators. Questionable points in the concept of static electricity), International Journal of Sex-Economy and Orgone Research, Vol. 4, 1945

12. Poyser, A.W.: MAGNETISM AND ELECTRICITY, Longmans, Green, & Co. 1895

 

Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Orgonotic Excitation Effects II“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 4, S. 211-232.

Orgonotische Erregungseffekte II (1958) (Teil 4)

2. Dezember 2018

von David Boadella

3. Die Erstrahlung des Elektrokops

Um die Beobachtungen an Isolatoren ein Stück voranzubringen, habe ich zwei Goldblatt-Elektroskope erworben. Die Elektroskope waren nicht teuer und die Messingstäbe, die die Blätter hielten, waren einfach in Glasflaschen mit Gummistopfen eingeschlossen. Sie wurden zu einer Zeit gekauft, als ich alles rieb, was aus Glas bestand, um zu sehen, ob es aufleuchtete, so daß ich an dem Abend, als sie geliefert wurden, sobald es dunkel wurde, das Elektroskop mit etwas Vorsicht rieb, da ich nicht das empfindliche Blattgold beschädigen oder verdrehen wollte. Nach einer oder zwei Minuten erschien zeitweise eine bläulich-grüne Erstrahlung um den Bauch der Flasche und weniger ausgeprägt im Hals der Flasche. Keine der Erstrahlungen war besonders stark, aber doch unmißverständlich. Gelegentlich gab es einen stärkeren kleinen Blitz in der Mitte des Behältnisses, dort wo ich annahm, daß sich die Blätter befänden.

Wenn das gleiche Streicheln des Halses und der Bauches der Flasche bei Tageslicht durchgeführt wurde, bemerkte ich keine Erstrahlung, fand aber, anfangs mit einiger Überraschung, daß die Blätter auf diese Weise tatsächlich sehr leicht zum Abspreizen gebracht werden konnten. An einem trockenen Tag war es möglich, mit einer oder zwei Strichen, die mit der Hand über dem Glas ausgeführt wurden, eine sehr starke Abspreizung hervorzurufen. Die strukturelle Ähnlichkeit zwischen dem Elektroskop und der elektrischen Glühbirne fiel mir erstmals zu dieser Zeit auf. Sie bestehen jeweils aus einer Glashülle, die eine Art Metallstange umgibt. Ob diese Anordnung etwas mit der Leichtigkeit zu tun hat, mit der die Ladung der Hand jeweils durch das Glas geht, weiß ich nicht.

Die Tatsache, daß das Elektroskop wie die Glühbirne direkt auf Erregung durch die Hand reagiert, ist auf den ersten Blick bemerkenswert, da die Elektroskopscheibe mit der Hand zu berühren die übliche Art ist, das Elektroskop zu entladen. Die Vorstellung, das Elektroskop von Hand aufzuladen, klingt eigenartig, genau wie die Vorstellung, eine Glühbirne mit der Hand zum Erstrahlen zu bringen. Elektroskope sind nicht dazu gedacht, auf diese Weise verwendet zu werden. Tatsächlich könnten die teureren Elektroskope mit einer Holzkiste und nur zwei Seiten flachen Glases, die im rechten Winkel zur Ebene der Blätter stehen, wahrscheinlich nicht so leicht mit der Hand aufgeladen werden. Die stärksten Reaktionen im Elektroskop, wie in der Glühbirne, finden sich, wenn es möglich ist, die Glashülle zu umfassen, um sozusagen eine erregende Umhüllung zu schaffen.* Dennoch ist das Elektroskop nur dazu bestimmt, an der Scheibe aufgeladen zu werden wie Glühbirnen „dazu bestimmt“ sind, von der Steckdose durch den Glühfaden beleuchtet zu werden.

Ein weiterer vorläufiger Einwand kann formuliert werden: Gasentladung sollte auf Ionisierung der Gasatome zurückzuführen sein. Wir haben gesehen, daß das Streichen der elektrischen Glühbirne eine Gasentladung erzeugt, die vom klassischen Physiker als Folge der Ionisierung eines Teils des Gases durch „mit der Hand hervorgerufene Elektrisierung“ betrachtet wird. Gemäß der Ionisationstheorie erfolgt die Ionisierung um so leichter, je mehr Gas vorhanden ist. Daher können wir erwarten, daß die Luft in Elektroskopen bei Atmosphärendruck leichter leuchtet als die Gasfüllung in Glühbirnen, die unter einem niedrigeren Druck stehen. Tatsächlich wurde in der Luft des Elektroskops sehr wenig Erstrahlung beobachtet: es waren hauptsächlich die Seite des Glases und das Metall, die glühten. Dennoch muß die „Elektrifizierung“ durch das Glas gegangen sein, um die Blätter abzulenken. Es ist auch bekannt, daß sich das geladene Elektroskop im Verhältnis zum Ausmaß der Ionisation der umgebenden Luft schneller entladen kann. So erstrahlt Luft, wenn sie durch das Glas einer Glühbirne hindurch angeregt wird, weil sie „ionisiert“ ist. Wenn jedoch die gleiche Aktion mit einem Elektroskop ausgeführt wird, das auch erstrahlt und sich dadurch auflädt, wird die Entladungswirkung dieser „ionisierten Luft“ übersehen. Wir werden bald einen ähnlichen Widerspruch in Verbindung mit der Erdung des Elektroskops finden.

Bevor ich weitere Experimente mit dem Elektroskop beschreibe, muß ich einen sehr starken Widerstand erwähnen, der sich im Laufe von mehreren Wochen entwickelt hat. Ich wußte, daß alles, was am Elektroskop geschah, vom orthodoxen Physiker als positive und negative Elektrizität erklärt werden würde. Mechanische Reibung sollte in einigen Isolatoren zu einem Überangebot an Elektronen führen (negative Ladung) und in anderen zu einem Mangel an Elektronen (positive Ladung). Im Laufe vieler Wochen, in denen ich verschiedene Materialien in unterschiedlichen Kombinationen an das Elektroskop heranführte, um zu sehen, wie es reagierte, hatte ich diese orthodoxe Erklärung der Phänomene im Kopf. Das Verhalten des Elektroskops war sehr verwirrend: Manchmal reagierte es auf eine Weise, die der orthodoxen bipolaren Theorie zu widersprechen schien; zu anderen Zeiten schien es sie zu bekräftigen. Wann immer das passierte, war ich versucht, das ganze sein zu lassen, sich dem größeren Wissen der Elektrophysiker zu beugen und zu denken, es müsse doch alles nur „Elektrizität“ sein. Meine Zweifel wurden noch dadurch bestärkt, daß ich, nachdem ich Reichs Artikel über Orgon und Statik gelesen hatte, feststellte, daß Reich die Ansichten des Elektrophysikers in ein oder zwei Punkten falsch dargestellt hatte. Etwas in mir wollte an der Sicherheit festhalten, keine Fragen stellen und keine Probleme lösen zu müssen, wenn ich die elektrische Erklärung ohne weiteres Hinauszögern akzeptierte. Die Aussicht, mit nur ein paar bahnbrechenden orgon-physikalischen Erkenntnissen, die mich leiteten, draußen vor zu sein, war beängstigend. Ich begann zu fühlen, was vom wohlwollenden Elektrophysiker in Reichs Artikel beschrieben wird: „Ich hätte nicht gedacht, daß ein einfaches Elektroskop einen dazu bringen könnte, sich das Hirn derartig zu zermatern.“

Auch hatte ich Angst, Fehler zu machen, mich in den Augen von Leuten, die viel mehr Physikkenntnisse besaßen als ich, zum Idioten zu machen und allgemein ins Fettnäpchen zu treten. Ich erfuhr, daß es einen gewissen Mut erfordert, um einfach sagen zu können, wie Reich es getan hat: „Ich möchte den Leser bitten, nachsichtig zu sein, was kleine Fehler betrifft, die hier und da gefunden werden könnten. Wenn man sich durch einen Dschungel schlägt, stolpert man leicht über eine Wurzel und macht einen Fehler. Der Pionier im Dschungel muß nicht unbedingt die exakte chemische Zusammensetzung der Blätter kennen. Die Theoretische Physik enthält so viele fundamentale Fehler, daß sie es sich nicht leisten kann, in der Rolle des intoleranten Kritikers einer jungen und wegweisenden fruchtbaren Wissenschaft wie der Orgonphysik aufzutreten“ (5, S. 98).

 

Fußnote

* Ähnlich funktioniert Orgon, wenn man es therapeutisch verwendet, am effektivsten in Form einer Umhüllung. Das Orgon-Kissen zum Beispiel ist viel stärker, wenn es um das betroffene Körperteil herum gelegt wird, statt es einfach auf es zu legen.

 

Literatur

5. Reich, Wilhelm: „Orgonotic Pulsation: the differentiation of orgone energy from electro-magnetism. Presented in talks with an electro-physicist“ (insbesondere Part II: The orgonotic excitation of insulators. Questionable points in the concept of static electricity), International Journal of Sex-Economy and Orgone Research, Vol. 4, 1945

 

Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Orgonotic Excitation Effects II“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 4, S. 211-232.

Orgonotische Erregungseffekte II (1958) (Teil 3)

30. November 2018

von David Boadella

2. Die Erstrahlung von Isolatoren (Fortsetzung)

Harvey hat in seinem Buch über LIVING LIGHT (lebendiges Licht) einige Beispiele von Erstrahlung vorgebracht, die den gegenwärtigen näher zu kommen scheinen. Sein Absatz dazu ist interessant genug, um ihn vollständig zu zitieren:

Was häufig als Reibungselektrizität bezeichnet wird, ist tatsächlich Elektrizität, die aus der Trennung von Oberflächen hervorgeht. Viele Beispiele sind bekannt. Die vorübergehende grünliche Lumineszenz, die an der Stelle auftritt, wo der Film des Elektrikers oder des Chirurgen oder „Scotch“ von einer Rolle abgezogen wird, ist bereits erwähnt worden. Der Autor hat beobachtet, daß diese Lumineszenz bei einigen Proben so hell sein kann, daß sie bei nur teilweise dunkeladaptierten Augen sichtbar ist. Das Phänomen kann wiederholt werden, wenn das Band zurückgespult und dann wieder abgezogen wird, und erscheint auch, wenn die klebrigen Seiten des Bandes zusammengepreßt und dann voneinander getrennt werden. Montagekleber, ob es nun zwei Stücke aus Metall, Glas, Papier, Zellophan oder zwei beliebige unterschiedliche Materialien sind, luminesziert, wenn die Oberflächen getrennt werden. Viele andere Substanzen, wenn sie eng aneinander haften, werden auch beim Auseinanderziehen lumineszieren. Filme, die von Glas oder Metall abgezogen werden, geben einen Lumineszenzblitz, zum Beispiel Kollodium, gelöst in einer Äther-Alkohol-Mischung, das auf eine Glasplatte gegossen wird und das man trocknen läßt. (7, S. 105f)

Harvey fährt fort, um seine Erklärung für diese Effekte zu geben:

Die Erklärung für alle derartigen Lumineszenzen scheint folgende zu sein: Immer wenn zwei Oberflächen voneinander getrennt werden, nimmt die Kapazität ab und die Spannung steigt an, bis eine Entladung stattfindet, wodurch das umgebende Gas angeregt wird zu lumineszieren. Daß eine Entladung tatsächlich stattfindet, kann leicht durch Abstreifen von Klebeband oder Scotch-Band in einer Neongas-Atmosphäre von 2 bis 4 cm Hg Druck gezeigt werden. Dann ist die Lumineszenz rötlich … Rote Lumineszenz tritt auch auf, wenn zwei Streifen Glimmer auseinander gezogen werden oder wenn Kollodium- oder bernsteinähnliche- oder Gummifilme in einer Niederdruck-Neon-Atmosphäre von Glas abgelöst werden. (7, S. 105)

So werden wir wieder zu Volt gebracht und zu der Art von Satz, der den Brief von der NPL charakterisiert: die Erklärung ‚scheint‘ dies oder das zu sein. Die Nuanciertheit oder Sanftheit der Aktivität, die notwendig ist, um eine Erstrahlung zu erzeugen, ist mit der elektrischen Vorstellung von Volt völlig unvereinbar.

An diesem Punkt müssen zwei weitere bemerkenswerte Beobachtungen aufgezeichnet werden. Ich lud einen Ethilon-Streifen [eine Art von Nylon] auf, indem ich ihn durch meine Finger zog, und bemerkte das Flackern, das dadurch entstand, als es so schien, daß einige der Lichtpunkte außerhalb des Bereichs des Ethilon lagen. Zuerst sah es so aus, als würde ein Teil des Lichts in den angrenzenden Raum „geschleudert“ werden, als ob ich ein Tuch in eine phosphoreszierende Farbe getaucht hätte und einen Teil der Farbe abschüttelte. Aber bei näherer Betrachtung zeigte sich, daß die Lichtpunkte tatsächlich kurz an der Kante eines nahegelegenen Holzregals leuchteten. Durch weiteres Wiederholen des Aufladens des Ethilon konnte dies viele Male wiederholt werden. Irgendwann konnte ich eine lange Reihe von Leuchtpunkten am Rand des Regals erzeugen, wenn ich in seiner Nähe über das Ethilon strich. Das Holz wurde überhaupt nicht berührt, daher wurde keine Reibung ausgeübt, und es gab keine Trennung von Oberflächen. Es war auch möglich, winzige Lichtpunkte auf dem Handrücken hervorzurufen, auf die gleiche Weise, ohne Kontakt und ohne Funkenbildung. Der emotionale Eindruck dieser leuchtenden Punkte, die in totem, unbeweglichem Holz und in einer untätigen Hand erschienen, war sehr bewegend. Besonders die Punkte auf dem Holz, die zahlreicher waren, erinnerten mich an einen wolkigen Nachthimmel, in dem eine Wolke zeitweise dünner geworden ist, so daß die Sterne für eine Sekunde durchscheinen, bevor sie im nächsten Augenblick wieder überdeckt werden.

Die zweite Beobachtung wurde erstmals gemacht, als die Kunststoffolie von der Akkumulatorwand gezogen wurde, wie oben beschrieben. Als ich meinen Arm in der Nähe hielt, um die Erstrahlung zu induzieren, spürte ich auf der Rückseite meines Armes ein sehr ausgeprägtes und unverwechselbares Gefühl von Wärme und Kribbeln. Am bemerkenswertesten und überzeugendsten ist die Tatsache, daß dieses Gefühl des Prickelns genau das ist, was man von der Akkumulatorwand erhält, wenn der Arm in geringem Abstand von ihr gehalten wird. Der Hauptunterschied besteht darin, daß der Effekt des Isolators viel stärker ist, solange er anhält, wobei er in einer Entfernung von sechs Zoll oder mehr vom Material besonders stark ausgeprägt ist, aber schnell nachläßt, während die Empfindungen, die durch die Akkumulatorwand induziert werden, kontinuierlich sind und nur mit dem Wetter variieren.

Ich habe diesen Effekt auch außerhalb des Akkumulators leicht erhalten, und er war am stärksten mit dem Ethilon-Streifen. Die Empfindung kann am besten als die beschrieben werden, die mit dem sehr leichtem Kontakt mit Fell verbunden ist oder mit Fäden, die man sich über die Haut ziehen läßt. Die Akkumulator-Empfindungen wurden auch mit dieser Art von Effekt verglichen (8).

Ich habe versucht herauszufinden, ob es in der Literatur über statische Elektrizität einen Hinweis auf einen solchen Effekt gibt. Leider sind die meisten modernen Lehrbücher mit der quantitativen und mathematischen Beschreibung des statischen Feldes beschäftigt und ignorieren dessen qualitative Eigenschaften. Es war notwendig, sich in Bücher zu vertiefen, die im letzten Jahrhundert geschrieben worden sind, bevor ich das Glück hatte, den folgenden kurzen Hinweis zu finden:

Andere Eigenschaften von elektrifizierten Körpern – Exp. 67. Elektrifiziere ein Glasrohr stark und halte es nahe dem Gesicht. Es wird eine besondere Empfindung wahrgenommen, die mit der des Kontakts mit Spinnweben vergleichbar ist. (12, S. 59)

Als ich aus dem Akkumulator kam, nachdem ich ungefähr eine Stunde lang mit einer Plastikfolie, die lose an den Innenwänden befestigt war, in ihm gesessen hatte, rief meine Frau überrascht, daß ich sehr rot aussähe. Ich schaute mich im Spiegel an und sah, daß mein Gesicht tatsächlich viel röter als sonst war und mein Hals fleckig war, als hätte ich einen leichten Ausschlag. Dies ließ bald nach. Bioenergetische Reaktionen wie diese sind Benutzern des Akkumulators in milderer Form bekannt. Sie können nicht im geringsten durch solche Bemerkungen erklärt werden, wie: „Du sitzt einfach da drin und es wird heiß und stickig“ (Washington Daily Post, 28.09.56). Das Vorhandensein einer Strahlung irgendeiner Art, ausgehend von dem angeregten Plastik oder Ethilon-Streifen, ist unverkennbar. Und diese Strahlung hat alle Eigenschaften, die wir mit dem Orgon verbinden.

 

Literatur

7. Harvey, E. Newton: LIVING LIGHT, Princeton University Press, 1940

8. Boadolla, David und Fancroff, Schleim: „Subjective reactions to the orgone accumulator“. Orgonomic Functionalism, Vol. II, 1955

12. Poyser, A.W.: MAGNETISM AND ELECTRICITY, Longmans, Green, & Co. 1895

 

Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Orgonotic Excitation Effects II“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 4, S. 211-232.

Orgonotische Erregungseffekte II (1958) (Teil 2)

28. November 2018

von David Boadella

2. Die Erstrahlung von Isolatoren

In dem Artikel über das Leuchten von Glühbirnen beschrieb ich, wie eine Vielzahl von Materialien ausprobiert wurden und wie die Verwendung dieser Materialien die Erregung durch die Hand zu behindern schien. Seither wurde eine Reihe von Ausnahmen gefunden, bei denen der Kontakt mit bestimmten Materialien eine ebenso starke, wenn nicht manchmal sogar stärkere Erstrahlung erzeugte, als die der Hände. Ich habe versucht, die 25 Watt Glühbirne in einen Gummihandschuh zu stecken und wieder herauszuziehen. Wenn beide trocken waren, leuchtete sie gut. Es war keine heftige Reibung nötig: Wenn der Handschuh über der Birne gehalten wurde und die Finger sich sanft dagegen bewegen konnten, gab es auch Blitze in der Birne. Mit etwas Übung konnte ich die Birne schwach glühen lassen, indem ich sie sehr nahe an den Handschuh bewegte, ohne sie jedoch zu berühren. Bei all diesen Gelegenheiten wurde der Gummihandschuh geladen, indem er zuerst für ein paar Sekunden in der Handfläche zerknüllt wurde, oder indem er ein paarmal über das Haar gestrichen wurde.

Anschließend habe ich versucht, einen Plexiglasbecher und einen Streifen aus einer Ethylenfolie (ein von Designern verwendetes Kunststoffmaterial) zu benutzen. Wenn die Glühbirne in den Becher gegeben und zurückgezogen wurde, leuchtete sie recht gut auf. Ich habe versucht zu verhindern, daß die Birne die Seiten des Bechers berührt. Sie hat ihn an bestimmten Stellen leicht berührt, da der Becher einfach nicht groß genug war, um das zu vermeiden. Aber der tatsächliche Kontakt war sicherlich minimal. Bei dem Ethylenstreifen leuchtete die Glühbirne stark auf bei einem Abstand von einem Zoll oder mehr, wenn der Streifen leicht bewegt wurde. Es sei daran erinnert, daß es der NPL gelungen ist, eine Erstrahlung der Birne zu erhalten, wenn Terylen ruckartig an ihr vorbeigeführt wurde. Wenn ein Nylonstrumpf über meine Hand gelegt wurde und die Birne durch ihn hindurch gestreichelt wurde, war das Leuchten schwächer, als wenn der Strumpf entfernt worden war.

Im Verlauf dieser Experimente bemerkte ich, daß der Gummihandschuh aufleuchtete, als ich ihn handhabte, wenn die Birne nicht benutzt wurde. Dies erforderte wiederum keine starke Reibung, sondern fand nur unter trockenen Bedingungen statt. Es war möglich, den Handschuh am unteren Ende mit den nach unten hängenden Fingern zu halten und die Erstrahlung nach unten zu den Fingern hin zu streichen. Das Licht war wieder bläulich, ziemlich schwach und manchmal leicht zu übersehen. Wenn ich den Handschuh gleichmäßig zwischen zwei Fingern hindurchzog, konnte man einen klar definierten flackernden bläulichen Rand entlang der Kante jedes Fingers beobachten. Durch dieses Licht konnte man in einem ansonsten völlig dunklen Raum sowohl die Position und die Länge dieser beiden Finger als auch den Winkel zwischen ihnen erkennen, wie es der bläuliche Rand zeigte.

Die Beobachtung, daß, wenn ein Seiden- oder Rayon-Kleidungsstück im Dunkeln kräftig über den Kopf gezogen wird, es bläuliche Blitze ausstoßen wird, ist nicht ungewöhnlich und wird wieder leichthin als „Elektrizität in deinem Haar“ erklärt. Ich kannte diesen Effekt in diesem Zusammenhang sehr gut, habe ihn aber nie in Kontakt mit meinen Händen beobachtet. Ich versuchte es mit einem alten Hemd aus Viskosefaser, das zwischen den Händen gerieben wurde. Es flackerte auch, aber etwas schwächer als der Gummihandschuh. Je größer die betroffene Oberfläche, desto stärker schien der Effekt zu sein. Wenn die Vorder- und Rückseite der Hand des Handschuhs zusammengedrückt, gestreichelt und dann getrennt wurden, war es möglich, ziemlich kräftige Blitze zu erhalten. Das Reiben des Handschuhs mit der darin befindlichen Hand erzeugte keinerlei Erstrahlung, wenn der Handschuh hauteng war. Wenn er leicht zerknittert war, so daß eine kleine Lücke zwischen Haut und Handschuh war und der Handschuh dann gestreichelt wurde, erstrahlten die Falten. So war es möglich, die Menge des erzeugten Lichts zu variieren, sowohl durch die Art des verwendeten Materials als auch durch die Handhabung. Es variierte von schwachem Glimmen des Handschuhs, wenn er zwischen den Fingern ‚zerbröselt‘ wurde (mit einer Tätigkeit, als zerbrösele man Tabak), mit nur einer sehr leichten Bewegung von zwei Fingerspitzen, bis zu kräftigen Blitzen, als zwei größere flache Flächen voneinander getrennt wurden.

Anschließend probierte ich verschiedene Arten von Plastikstreifen aus (alte Tischdecken, Mackintoshs [„Mac“, Baumwollstoff, der mit in Gummi löslicher Textilfarbe imprägniert wurde], usw.). Ich versuchte, im Orgon-Akkumulator zu sitzen, mit einem Plastik-Mac, der neben der Metallwand hing. Wenn das Mac einmal fest gegen das Metall gerieben wurde und dann zu mir gezogen wurde, gab es starke Blitze bei der Trennung vom Metall und wieder wenn ich meinen Arm oder meine Hand nahe an das Mac brachte. (Nur ein Mac funktionierte so gut; ein anderer, der versucht wurde, gab nur sehr schwache, minimale Effekte). Wenn ich meinen Handrücken so nahe an den Stoffstreifen hielt, nachdem er auf diese Weise gerieben und weggezogen wurde, konnte man an jedem Fingerknöchel nacheinander einen winzigen blauen Funken erkennen. Dabei trat genausowenig ein Gefühl des Unbehagens auf, wie bei den winzigen Funken, die an den Kontaktbolzen der Glühbirne erhalten wurden, wie zuvor beschrieben.

Es wird akzeptiert, daß es 2 500 Volt benötigt, um einen ½ mm langen elektrischen Funken zu erzeugen.

Ich habe andere Isolatoren, Hartgummi und Glas, ausprobiert. Eine Hartgummistange, die zwischen den Fingern gezogen wurde, ergab eine ähnliche „schimmernde“ Linie wie der Gummihandschuh. Ich versuchte, gewöhnliche Marmeladengläser zu reiben und erhielt keinen Effekt, aber ein Leser des Artikels rief an, um mir zu sagen, daß er an der Außenseite von Glastassen ein Aufleuchten erhielt, wenn er sie rieb.

Ungefähr zu dieser Zeit las ich einen Brief im News Chronik von einer Frau, die sich beschwerte, daß es zu viel „Radioaktivität“ gäbe, da die Plastikrassel ihres Babys in einem dunklen Raum mit einem „seltsamen grünlichen Licht“ glühe. Sie sagte nicht, ob das weiterging, wenn sie unberührt blieb, aber es scheint wahrscheinlich, daß sie die gleiche Art von Phänomen bei einem Isolator beobachtete, der von dem Baby angeregt worden war. Zwei Tage später erschien der folgende Brief im News Chronik, unterschrieben von einem Fellow des Institute of British Physicists unter der Überschrift „Gespeichert“: „Es ist sehr unwahrscheinlich, daß die Rassel von Baby Murkin radioaktiv ist. Viele Substanzen leuchten im Dunkeln aufgrund einer Freisetzung von Energie, die in einer chemischen oder physikalischen Form gespeichert worden sein kann. Einiges, dazu gehören einige Kunststoffe, speichert Energie, wenn Licht auf es fällt, und gibt sie langsam ab, wenn es im Dunklen ist. John Vickers” (22.05.58).

Mit anderen Worten, die Erstrahlung wird hier mit Phosphoreszenz erklärt. Das Licht hat die Rassel angeregt (wenn es das Licht war, und nicht die Handhabung, die für die Anregung sorgte), und als Ergebnis strahlt die Rassel. Wenn wir fragen, warum sie strahlen sollte, beginnt das Problem, denn wir finden, daß bei der Phosphoreszenz „es nicht viel gibt, was weniger gut verstanden wird“. Im wissenschaftlichen Sinne ist ein phosphoreszierender Gegenstand etwas, das, nachdem es dem Licht ausgesetzt worden war, im Dunkeln scheint. Offensichtlich kann er Licht speichern und es wieder abgeben, aber wie das geschieht, weiß niemand“ (2, S. 525). In einem Buch über fluoreszierende Beleuchtung lesen wir, daß „die verschiedenen Phänomene (der Fluoreszenz bei Festkörpern) so komplex sind, daß die Erklärungen noch nicht vollständig bekannt sind” (6, S. 13).

 

Literatur

2. Taylor, Sherwood: THE WORLD OF SCIENCE, Heinemann, 1936

6. Zwikker, C. (ed.): FLUORESCENT LIGHTING, Philips Technical Library, Eindhoven, Holland, 1952

 

* Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Orgonotic Excitation Effects II“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 4, S. 211-232.

Orgonotische Erregungseffekte II (1958) (Teil 1)

26. November 2018

von David Boadella

 

[Vorbemerkung des Übersetzers: Der erste Artikel findet sich hier ff.]

1. Einige theoretische Überlegungen

Die in der letzten Ausgabe dieser Zeitschrift (1) beschriebenen Erstrahlungseffekte wurden von einer Reihe von Personen wiederholt. Ich antwortete auf den Brief des National Physical Laboratory (NPL) und wies in erweiterter Form auf die Widersprüche zwischen ihrer Erklärung und dem beobachteten Verhalten der Glühbirnen hin. Eine kurze Antwort ist eingegangen, die ihre Überzeugung wiederholt, daß die Phänomene abhängen von „der Art und dem Druck des gegebenen Restgases, der Zusammensetzung des Glases der Glühbirne (da es die isolierenden Eigenschaften und die Leichtigkeit des Elektrisierens beeinflußt) und wahrscheinlich von mehreren anderen Faktoren, wie die atmosphärische Luftfeuchtigkeit zu der Zeit“. Sie schließen das Thema, indem sie hinzufügen: „Es gibt unserer Meinung nach wenig zu gewinnen, wenn man der Sache weiter nachgeht, außer wenn man sich dafür entscheidet … durch sorgfältig kontrollierte Experimente.“ Die Bedeutung der weiteren Experimente, von denen ihnen berichtet wurde, wird ignoriert.

Zwei Kritikpunkte sind von einem Leser des Originalartikels aufgeworfen worden. Der erste bezieht sich auf den Vakuumdruck und der zweite auf die Ladung der Hände. Beide sind von Interesse für die Art von Komplikationen, die auftauchen, sobald jemand versucht zu zeigen, daß die Leuchteffekte „einfach genug“ durch orthodoxe physikalische Konzepte erklärt werden können.

Es wurde von dieser Person angeführt, daß, in Übereinstimmung mit der Anmerkung der NPL, je weniger Gas es gibt, desto geringer die Lichtausbeute sei. Um diese Sichtweise zu unterstützen, hat sie eine 20 Jahre alte Vakuumlampe mit geradem Heizfaden vorgelegt und mich aufgefordert, hier irgendwelches Licht hervorzurufen. Sie sagte, daß diese Lampe ein viel höheres Vakuum als moderne vakuumgefüllte Lampen hätte und deshalb nicht leuchte. (Vergleiche das mit der NPL-Aussage: „Wir wiederholen, daß der Grad des Vakuums den Effekt bestimmen wird, so daß einige gut gemachte moderne Vakuumlampen ihn nur schwer oder gar nicht zeigen könnten.“) Zur weiteren Unterstützung ihrer Ansicht, erklärte sie kategorisch, daß unterhalb eines bestimmten Drucks, ein Vakuum überhaupt nicht leuchte, und daß der Druck von 0,5 Mikron (in dem Artikel angegeben und von Reich verwendet) unerreichbar sei.

Was man beachten muß, um den Widerspruch, der die Vakuumfrage umgibt, zu entwirren, ist der Kontrast zwischen der normalen Methode eine Erstrahlung im Vakuum hervorzurufen und den Ergebnissen, die über die Hände berichtet werden und von Dr. Ola Raknes mit Vakuums bestätigt wurde, deren Druck bekannt war. Dr. Raknes erhielt seine Ergebnisse bei Vakuums mit einem Druck von 1/10 000 und 1/100 000 einer Atmosphäre. Hier eine Beschreibung aus einem Lehrbuch über Physik über den normalen Ablauf der Vakuumentladung:

Wenn die Luft nach und nach aus einer Röhre mit zwei Plattenelektroden gepumpt wird, die auf einer Potentialdifferenz von einigen tausend Volt gehalten werden, erscheint eine leuchtende Entladung, wenn sich der Druck einem 1/1000 einer Atmosphäre nähert. Angenommen, wir setzen die Entleerung unserer Entladungsröhre fort. Die leuchtenden Wolken schrumpfen von der Mitte der Röhre zurück, und der dunkle Raum nimmt zu, bis der Druck in der Röhre nur ein Millionstel einer Atmosphäre ist (d.h. 0,75 Mikron), die leuchtenden Erscheinungen im Gas haben vollständig aufgehört, obwohl Elektrizität immer noch geleitet wird. Die Wände der Röhre leuchten mit einem grünlichen Licht. Unsichtbare „Strahlen“ durchdringen die Röhre. Diese Strahlen sind ein Hagel von Elektronen, die sich mit großer Geschwindigkeit vom negativen Pol zum positiven bewegen. (2, S. 292)

Bei der 20 Jahre alten Glühbirne, die mir übergeben worden war, erwies es sich als sehr schwierig, mit den Händen irgendwelches Licht zu erhalten. Aber sie wurde leicht zum Leuchten gebracht, indem man sich mit einem geladenen Isolator irgendeiner Art näherte. Ich habe nicht herausgefunden, wie hoch der Druck dieser Lampe ist. Die G.E.C. hat mich jedoch informiert, daß die modernen 25 Watt Glühbirnen mit einem Druck von 0.0001 mm, d.h. 1 Mikron hergestellt werden. Dennoch muß die Leichtigkeit dieser Erstrahlung der NPL-Aussage [National Physical Laboratory] gegenübergestellt werden: „Von daher wird die schnellstmögliche Annäherung eines geladenen Hartgummistabes keine Wirkung zeitigen, da sie immer noch nicht schnell genug ist.“

Der zweite Kritikpunkt der gleichen Person war eine direkte Leugnung, daß die Ladung der Haut in Millivolt meßbar sei. Sie behauptete, daß die Hände leicht mehrere tausend Volt enthalten könnten, deshalb gäbe es nichts Bemerkenswertes bei den Erstrahlungseffekten. Sie sah daher keinen Grund, die Aussage zu akzeptieren, daß die elektrische Spannung der Hände tausendmal schwächer sei als die, die zur Erzeugung der normalen Vakuumentladungen verwendet wurde, wie oben zitiert. Die oszillographischen Experimente von Reich, zitiert als Beweis für die niedrige Spannung der Haut, akzeptiere sie nicht, da, wie sie sagte, „der Oszillograph keine Spannung mißt, er mißt Strom“. Der Punkt ist von einiger Wichtigkeit, denn, wenn man ohne Zweifel zeigen kann, daß die normale elektrische Spannung der Hände in der Tat im Bereich von Millivolt liegt, dann wird es tatsächlich sehr schwierig zu verstehen, wie das sanfteste Streicheln zu einer Erstrahlung führen kann, die Tausende von Volt erfordert. Ein Blick auf Reichs Bericht über seine Experimente machte deutlich, daß es sich um Spannung handelte, die er gemessen hatte. Reich verband die an der Haut befestigten Elektroden mit Hilfe von Drähten an die Gitterplatten in der Elektronenröhre seines Oszillographen. Ein Elektronenstrom floß durch diese Platten von einer Kathode zu einer Anode. Jede Ladung auf den Platten lenkte den Elektronenstrahl ab, und die Ablenkung konnte auf einem Bildschirm beobachtet werden.

Der Oszillograph wurde auf 10 Millivolt kalibriert. Die beobachtete Ablenkung konnte daher direkt mit der Kalibrierung verglichen werden. Der Widerstand des Oszillographen betrug 2 Millionen Ohm, die von den Händen erzeugte Strommenge war daher außerordentlich niedrig: Reich gibt sie als 0.000001 eines Ampere an, d.h. 1 Mikroampere (3).

Im folgenden muß der Unterschied zwischen der Ähnlichkeit von Einheiten und der Äquivalenz von Einheiten, der im ersten Artikel referiert wurde, ständig im Auge behalten werden. Es ist dann unerheblich, ob wir den Ausdruck „Statik“ verwenden oder „Orgon“, um bestimmte Effekte zu beschreiben, solange wir uns daran erinnern, daß „Statik“ mit Eigenschaften einhergeht, die die Strom-Elektrizität nicht besitzt. Wenn man in ein Geschäft geht, das elektrische Geräte oder elektrische Meßvorrichtungen verkauft, und nach einem Elektroskop fragt, ist die typische Reaktion „Ein Elektroskop? Was ist das? Wofür wird es verwendet?“. Dann kommt vielleicht eine Erinnerung an die Physik der Sekundarstufe zurück und ihnen wird dunkel bewußt, was ein Elektroskop ist. Der Begriff „Statik“ betont die Ähnlichkeiten zwischen Effekten bei Isolatoren und Effekten bei Metall und Drähten, die Unterschiede werden tendentiell vergessen oder übersehen, sie sind nicht wichtig. Der Begriff „Orgon“ betont die Ähnlichkeiten zwischen den Reaktionen von Isolatoren und Reaktionen des Lebendigen. Der Begriff „Elektrizität“ weist auf die mit Batterien verbundenen Phänomene und die Bewegung von Drähten in Magnetfeldern hin. Es ist lehrreich, sich daran zu erinnern, wie der Begriff auf Isolatoren angewendet wurde. Einige der frühesten Beobachtungen von „statischen“ Effekten wurden von Thales mit Bernsteinstücken gemacht. „Thales wußte nicht, warum Bernstein leichte Objekte anziehen konnte. Er wußte nur, daß Bernstein nach dem Reiben eine neue Eigenheit angenommen hatte. Wir sagen, daß der Bernstein elektrifiziert wurde, oder daß er durch Reiben ‚Elektrizität‘ erworben hat. Das Wort ‚Elektrizität‘ wurde gewählt, weil der griechische Name für Bernstein ‚Elektron‘ ist! Wenn wir also sagen, daß ein Kamm aus Hartgummi oder Plastik elektrisch aufgeladen (elektrisiert) wurde, sagen wir tatsächlich, daß der Kamm ‚bernsteinisiert‘ worden ist; der Kamm verhält sich wie Bernstein, wenn er gerieben wird“ (4, S. 306).

Es war das Erwägen der Unterschiede zwischen ‚Statik‘ und Elektrizität, und die Ähnlichkeiten zwischen ‚Statik‘ und atmosphärischer Orgonenergie, die Reich zu der Schlußfolgerung brachte, daß „der Begriff der ‚Reibungselektrizität‘ durch den der orgonotischen Erregung ersetzt werden könnte! ‚Reibungselektrizität‘ wäre dann nicht mehr als ein uninteressanter Spezialfall orgonotischer Erregung, der auf passiv absorbiertem Orgon basieren könnte, oder Orgon, das als Teil des lebendigen Funktionierens ausgestrahlt wird“ (5, S. 115).

 

Literatur

1. Boadella, David: „Some orgonotic lumination effects“. Orgonomic Functionalism, Vol. 5, No. 2, 1958

2. Taylor, Sherwood: THE WORLD OF SCIENCE, Heinemann, 1936

3. Reich, Wilhelm: EXPERIMENTELLE ERGEBNISSE ÜBER DIE ELEKTRISCHE FUNKTION VON SEXUALITÄT UND ANGST, Kopenhagen, 1937

4. Dees, Bowen C.: FUNDAMENTALS OF PHYSICS, Philadelphia, 1945

5. Reich, Wilhelm: „Orgonotic Pulsation: the differentiation of orgone energy from electro-magnetism. Presented in talks with an electro-physicist“ (insbesondere Part II: The orgonotic excitation of insulators. Questionable points in the concept of static electricity), International Journal of Sex-Economy and Orgone Research, Vol. 4, 1945

 

Abdruck der Übersetzung aus dem Englischen mit freundlicher Genehmigung des Autors, Dr. Boadella. Der Originalaufsatz „Orgonotic Excitation Effects II“ findet sich in der von Paul und Jean Ritter in Nottingham, England herausgegebenen Zeitschrift Orgonomic Functionalism, Vol. 5 (1958), No. 4, S. 211-232.

Zur Entstehungsgeschichte der Orgonomie (Teil 6)

15. September 2018

Dieses Bild hat ein leeres alt-Attribut; sein Dateiname ist heimann.jpg.https://www.orgonomie.net/Entstehungsgeschichte.pdf